

Objective

Compute a 3D model from many satellite images of the same site at different dates.

Contributions

- 3D models obtained by fusing few well-chosen multi-date pairs can be as accurate as those obtained from a same-date pair
- Heuristic pair selection criterion
- A fusion strategy that accounts for seasonal vegetation changes

IARPA MVS challenge* dataset

47 images of Buenos Aires acquired over 14 months [1]

incidence angle noise & reflections

seasons

* An early implementation of the proposed method was used to win the IARPA Multi-View Stereo 3D Mapping Challenge 2016.

Automatic 3D Reconstruction from Multi-Date Satellite Images

Gabriele Facciolo, Carlo de Franchis, and Enric Meinhardt-Llopis CMLA, École Normale Supérieure Paris-Saclay, France

Algorithm

The quality of 3D models from multi-date pairs varies wildly!

We aggregate models computed from well-chosen pairs.

same-date (θ_{max} : 45°) multi-date (θ_{max} : 15°)

1. Image Pair Selection

Proposed pair selection heuristic:

- Maximum incidence angle $\theta_{max} < 40^{\circ}$
- Angle between the views $\alpha \in [5, 45]^{\circ}$
- Temporal proximity

2. Stereo Matching of Selected Pairs

- Use a modular Satellite Stereo Pipeline: S2P [2]
- Census-based correlator MGM [3] + ad-hoc mismatch filtering
- Triangulation without pointing correction

3. Alignment and Fusion

- Align DSMs by correlation (bias correction [4])
- Merging. Instead of median [5], take the lower cluster of the height histogram (removes seasonal vegetation)

Justifications

Heuristic order is obtained by studying the oracle order. Use training data to compute and evaluate all 2162 image pairs. Sort pairs with decreasing complete**ness** (% of pixels with error below 1 m).

Different fusions of best N pairs according to heuristic order

Can a model obtained exclusively from multi-date images be as accurate as one from a single same-date stereo pair?

same-date hextuple (15 pairs) 38 multi-date images (50 pairs)

Completeness & RMSE of merged DSMs using 50 pairs

	heurist	ic order	oracle order					
site	med	k-med	med	k-med				
training	79.0 / 2.67	80.1 / 2.89	79.3 / 2.69	80.2 / 2.89				
site 1	73.6 / 1.80	74.0 / 1.88	74.4 / 1.79	74.7 / 1.88				
site 2	71.8 / 3.97	73.1 / 3.87	71.6 / 3.85	73.1 / 3.79				
site 3	57.2 / 6.73	58.6 / 7.52	57.9 / 6.36	59.6 / 6.98				

Results

Screenshots of our results

IARPA challenge scoreboards

		site 1			site 2			site 3								
solution	comp	med	RMS	comp	med	RMS	comp	med	RMS	score	colution	ccoro				
Psyho	60%	0.24	1.29	55%	0.19	1.75	43%	0.14	3.24	92.5%	solution	score	site	comp	med	RMS
carlito	69%	0.17	1.28	61%	0.16	2.35	45%	0.26	3.69	90.2%	Davha	90.3 /0	1	69%	0.20	1.17
sdrdis	52%	0.48	1.48	51%	0.27	1.69	38%	0.32	3.21	87.7%	r Syno	95.0 / ₀	2	64%	0.19	1.43
kbatsos	67%	0.34	2.06	56%	0.33	3.31	44%	0.73	5.06	75.4%	suruis	79.9/0	3	55%	0.22	2.46
jacobgal.	69%	0.49	2.04	63%	0.67	4.11	53%	1.01	6.65	74.1%	qiirj521 khatsas	70.0 / 0	4	64%	0.19	2.16
qinrj321	68%	0.47	1.78	60%	0.68	3.82	46%	1.15	6.60	72.8%	KDALSOS	07.2/0				
JHU/APL	70%	0.39	1.90	59%	0.59	3.96	43%	1.34	9.95	-						
	1						1									
			_		_										_	

Provisional scores (3 known sites)

Final scores (4 unknown sites) Carlito detail

References

- [1] Bosch Ruiz et al. A Multiple View Stereo Benchmark for Satellite Imagery. *IEEE AIPR Workshop*, 2016.
- [2] de Franchis et al. An automatic and modular stereo pipeline for pushbroom images. *ISPRS Annals*, 2014.
- [3] Facciolo et al. MGM: A Significantly More Global Matching for Stereovision. *BMVC*, 2015.
- [4] Grodecki and Dial. Block adjustment of high-resolution satellite images described by Rational Polynomials. Photogramm Eng. Remote Sensing, 2003.
- [5] Ozcanli et al. A comparison of stereo and multiview 3-D reconstruction using cross-sensor satellite imagery. 2015 IEEE CVPR Workshop, 2015.

