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Abstract

Image denoising and demosaicking are the first two cru-
cial steps in digital camera pipelines. In most of the liter-
ature, denoising and demosaicking are treated as two inde-
pendent problems, without considering their interaction, or
asking which should be applied first. Several recent works
have started addressing them jointly in works that involve
heavy weight neural networks, thus incompatible with low
power portable imaging devices. Hence, the question of
how to combine denoising and demosaicking to reconstruct
full color images remains very relevant: Is denoising to be
applied first, or should that be demosaicking first? In this
paper, we review the main variants of these strategies and
carry-out an extensive evaluation to find the best way to
reconstruct full color images from a noisy mosaic. We con-
clude that demosaicking should applied first, followed by
denoising. Yet we prove that this requires an adaptation of
classic denoising algorithms to demosaicked noise, which
we justify and specify.

1. Introduction
Most digital cameras capture image data by using a sin-

gle sensor coupled with a color filter array (CFA). At each
pixel in the array, only one color component is recorded,
in a mosaic image. The most common CFA is the Bayer
color array [6], in which two out of four pixels measure the
green component, one measures the red and one the blue.
The process of completing the missing red, green and blue
values at each pixel is called demosaicking. Noise is in-
evitable, especially in low light conditions and for small
camera sensors like those used in mobile phones. The con-
ventional approach in raw image restoration pipelines has
long been to apply denoising and demosaicking as two in-
dependent steps [49]. Furthermore, the immense majority
of image processing papers addressing one of both opera-
tions do not address its combination with the other one. All
classic denoising algorithms have been designed for color
or grey level images with white noise added. Yet the realis-

tic data are different: either a mosaic with white noise or a
demosaicked image with structured noise.

Joint denoising/demosaicking methods. This has
led several recent works to propose joint demosaick-
ing/denoising methods [9, 21, 26, 32]. For example [22]
proposed a variational model for joint demosaicking,
denoising and deblurring. It uses a sparsifying prior based
on wavelet packets applied to decorrelated color channels.
More detail about this complex method can be found in [2].

Life has become far easier for joint denois-
ing/demosaicking with the emergence of machine learning
methods. It is, indeed, easy to simulate as much training
data as needed. This methodology was used in [55] to
train a convolutional neural network (CNN) for demo-
saicking outperforming the best handcrafted methods,
including ARI [47], by nearly 2 decibels. One of the first
joint denoising/demosaicking methods based on machine
learning was proposed in [32] along with a public ground
truth dataset. From there, results improved rapidly, first
with deeper CNNs architectures [21], or cascaded energy
minimization methods tuned by learning [37]. Then,
by optimizing the perceptual quality using generative
adversarial networks [15], and more recently by inserting
many residual denoising layers in a CNN [38].

These joint denoising/demosaicking methods can handle
a range of noise levels, but unlike traditional methods, they
fail outside the trained range. The “mosaic-to-mosaic” fine-
tuning introduced in [17] provides a way to adapt to un-
known noise without requiring ground truth, by using bursts
of raw images. The method is analogous to the noise-to-
noise [42] and frame-to-frame [18] frameworks to handle
noisy mosaicked raw data. However, bursts may not be
available and the fine-tuning is computationally demand-
ing.

Yet, the question of how to combine denoising and
demosaicking algorithms, when conceived as independent
blocks, remains very relevant. This is especially true in the
context of low power or portable devices, but also given the
fact that the main effort in denoising and demosaicking has



addressed them independently. In addition, they can cope
with a wide range of noise levels without retraining.

A big argument in favor of performing denoising be-
fore demosaicking is that most existing demosaicking al-
gorithms have been developed under the unrealistic as-
sumption of noise-free data [8, 10, 21, 24, 25, 28, 33–
36, 38, 43, 47, 52, 56–59, 63]. Yet the performance of these
algorithms can degrade dramatically when the noise level
increases on the CFA raw image. Therefore, a previous de-
noising step is implicitly required by these algorithms.

In this paper we focus on the early CFA processing in
the imaging pipeline (operating in linear space). We assume
that the noise in the raw mosaic is additive white Gaussian
(AWGN) and that its variance is known. This is realistic be-
cause, first, a variance stabilizing transform (VST) [5] ap-
plied to a raw image results in a nearly AWG noise and, sec-
ond, because an accurate noise model is often known or can
be estimated [11, 53]. In general, image denoising methods
can be grouped into two major categories, the model based
methods such as non-local means [7, 29, 30], nlBayes [39],
CBM3D [12] and WNNM [23], and deep learning methods
such as [27, 60]. The ensuing CNNs are sometimes flexible
in handling denoising problems with various noise levels.

Our question here is simple: Is it better to apply de-
noising and then demosaicking (which we will denote
DN&DM : DN and DM indicate denoising and demo-
saicking respectively), or to apply first demosaicking and
then denoising (DM&DN )?

DN&DM methods (i.e. denoising then demosaicking):
advantages and drawbacks. Many state of the art works
[31, 49, 50, 61] support the opinion that DN&DM outper-
forms DM&DN . Their first convincing argument is that
after demosaicking noise becomes correlated, thus losing
its independent identically distributed (i.i.d.) white Gaus-
sian property. This increases the difficulty of applying ef-
ficient denoising and actually seems to discard all classic
algorithms, that mostly rely on the AGWN assumption. A
second obvious argument is that the best demosaicking al-
gorithms have been designed with noise-free images.

For example, Park et al. [50] considered the classic
Hamilton-Adams (HA) [24] and [16] for demosaicking,
combined with two denoising methods, BLS-GSM [54]
and CBM3D [13]. This combination raises the question
of adapting CBM3D to a CFA. To do so, the authors ap-
ply a sparsifying 4D color transform to the 4-channel im-
age formed by rearranging the Bayer pixels. Then apply
BM3D to each channel and inverse the color transform. In
the very same vein, in the BM3D-CFA method [14] BM3D
is applied directly on the CFA color array. To do so, “only
blocks having the same CFA configuration are compared
to build the 3D blocks. This is the only modification of
the original BM3D”. A little thought leads to the conclu-

sion that this amounts to denoise four different mosaics of
the same image before aggregating the four values obtained
for each pixel. The authors compare two denoising algo-
rithms with two different setups: a) filtering CFA as a sin-
gle image and b) splitting the CFA into four color compo-
nents, filtering them separately, and recombining back the
denoised CFA image. This paper showed a systematic im-
provement over [61]. They use the Zhang-Wu demosaick-
ing method [62] for the comparisons. In our comparisons
the method of [14] will be mentioned every time we con-
sider the DN&DM setup with BM3D. We will neverthe-
less replace the demosaicking of [62] by RCNN [57], which
clearly outperforms it.

Similarly in [9] denoising is performed by an adaptation
of NL-means to the Bayer pattern, where only patches with
the same CFA configuration are being matched. This paper
formulates the demosaicking as a super-resolution problem,
assuming that the observed values are actually averages of
four values in the high resolution image. It then guides this
super-resolution problem by the NL-means weights. The
method is compared with [46] and [61]. The authors of
[61] also propose an DN&DM method, where the demo-
saicking method is [62] and the the denoising method is an
adaptation of nlBayes [39] to a Bayer pattern. The method
extracts blocks with similar configuration in the Bayer ar-
ray and groups them by similarity. Then, applies principal
component analysis (PCA) to the groups and a Wiener de-
noising procedure which can be interpreted as a linear mini-
mum mean square error estimator. In our experiments, this
PCA method [61] will be considered every time we evaluate
the DN&DM scheme (but combined with a more recent
demosaicking such as RCNN [57]). The more recent pa-
per [64] involves similar arguments. This paper uses a linear
filter [4] to extract the luminance from the CFA. Then it re-
marks that this luminance is correlated, so it applies a vari-
ant of NL-means that attempts to decorrelate the noise. The
same method is applied to each downsampled color channel
and the high frequency of the grey level is transported back
to the color channels. This method under-performs with re-
spect to others considered here, so we shall not include it to
our final comparison tables.

The paper [51] is another method promoting denoising
before demosaicking, involving dictionary learning meth-
ods to remove the Poisson noise from the single channel
images prior to demosaicing. Experimental results on sim-
ulated noisy images as well as real camera acquisitions,
show the advantage of these methods over approaches that
remove noise subsequent to demosaicing. The paper never-
theless uses [44], an outdated demosaicking method.

To summarize, in the DN&DM strategy all classic de-
noising algorithms such as CBM3D, nlBayes, nlMeans have
been adapted to handle a noisy mosaic. Several of them
[31, 49, 50, 61] address this realistic case by processing the



noisy CFA image as a half-size 4-channel color image (with
one red, two green and one blue channels) and then apply
a multichannel denoising algorithm to it. The advantage of
the denoising step of DN&DM is that the Poisson noise
can be led back by the classic case of i.i.d. white Gaussian
noise by an Anscombe transform. The disadvantage is that
the resolution of the image is reduced and, as a result, some
details might be lost after denoising. Another issue of this
strategy is that the spatial relative positions of the R, G, and
B pixels are lost by handling the image as a four channel
half size image.

In this paper, we address the above mentioned issues.
We first delve into the advantages and disadvantages of
DN&DM and DM&DN approaches. We then analyze
noise properties after demosaicking and adjust two exist-
ing classic denoising algorithms (CBM3D and nlBayes) to
accommodate them to this type of noise. Then, we per-
form a thorough experimental evaluation, to conclude that
DM&DN (with an adjusted noise parameter) is superior
to DN&DM . This result is opposite to the conclusion of
[31, 49, 50, 61]. The advantages of DM&DN seem to be
linked to the fact that this scheme does not handle a half size
4-channels color image; it therefore uses the classic denois-
ing methods directly on a full resolution color image; this
results in more details being preserved and avoids checker-
board effects.

Section 2 presents in detail the problem and the main
ideas behind the proposed DM&DN strategy. Section 3
is a detailed evaluation of the proposed strategy. Section 4
concludes.

2. The demosaicking and denoising framework
Consider a CFA block as shown in Fig. 1. The raw

Bayer CFA images are scalar mosaics matrices with noise,
which are converted to photo-finished images by the imag-
ing pipeline. The simple pipeline proposed in [1] performs:
1. black level and dark frame correction, 2. white balance,
3. demosaicking/denoising, 4. colorspace conversion, and
5. tone curve.

Modern camera image processing chains may include
multiple denoising stages, before and after the tone curve.
Here, we focus on the early CFA processing of step 3. At
this stage image values are linear and noise cannot be as-
sumed white Gaussian. However, a VST leads back to the
classic white Gaussian setting. When considering real im-
ages with non Gaussian noise, we shall apply a VST before
the denoising step (DM ) and its inverse afterwards. But,
in our experiments with simulated noise we shall consider
AWG noise.

Park et al. [50] argued that demosaicking introduces
chromatic and spatial correlations to the noisy CFA image.
Then the noise is no longer i.i.d. white Gaussian, which
makes it harder to remove. In [31], some experiments were

Figure 1. Bayer color filter array, CFA, which is used by most
cameras.

done to show that DN&DM schemes are more efficient to
suppress noise than DM&DN schemes. Based on this ar-
gument several denoising methods [3, 41, 50, 61] for raw
CFA images before demosaicking were introduced. Other
denoising methods that are not explicitly designed to handle
raw CFA images (such as CBM3D and nlBayes) can also be
applied on noisy CFA images by rearranging the CFA im-
age into a half-size four-channels image with two greens on
which the denoising algorithm is applied [50]. The denoised
CFA is then recovered by undoing the pixel rearrangement.
However, this strategy reduces the resolution of the image
seen by the denoiser, and we observed checkerboard effects
resulting from chromatic aberrations in the two green chan-
nels after denoising. To address this issue, Danielyan et
al. [14] proposed BM3D-CFA which amounts to denoise
four different mosaics of the same image before aggregat-
ing the four values obtained for each pixel.

Modeling demosaicking noise. In order to solve the
above two problems, we shall revisit theDM&DN scheme
which, in contrast to the DN&DM scheme, does not halve
the image size. This is a way around the above mentioned
problems. A serious drawback, though, is that chromatic
and spatial correlations have been introduced by the demo-
saicking in the raw noise, which is no longer white. We
must therefore analyze the demosaicked noise.

Definition Given a ground truth color image (R,G,B)
we define the demosaicked noise associated with a demo-
saicking method DM in the following way: first the im-
age is mosaicked so that only one value of either R,G,B
is kept at each pixel, according to a fixed Bayer pattern.
Then white noise with standard deviation σ0 is added to the
mosaicked image, and the resulting noisy mosaic is demo-
saicked by DM , hence giving a noisy image (R̃, G̃, B̃). We
call demosaicked noise the difference (R̃−R, G̃−G, B̃ −
B). In short, it is the difference between the demosaicked
version of a noisy image and its underlying ground truth.

The model of the demosaicked noise depends on the
choice of the demosaicking algorithm DM . For the demo-



(a1) Ground truth (a2) Ground truth

(b1)DN&DM /26.92dB (b2)DN&DM /26.92dB

(c1) DM&DN /25.38dB (c2) DM&DN /25.38dB

(d1) DM&1.5DN /26.95dB (d2) DM&1.5DN /26.95dB

(e1) JCNN /27.46dB (e2) JCNN /27.46dB

Figure 2. Comparison of eight denoising and demosaicking
schemes with noise σ0 = 20. Left, detail of the demosaicked
and denoised image; right, the difference with original that should
contain mainly noise. DN : CBM3D denoising; DM : demo-
saicking (here we use RCNN). 1.5DN means that if noise level
is σ0, the input noise level parameter of denoising method DN is
σ = 1.5σ0; DN&DM : uses the BM3D-CFA framework [14] for
denoising.

saicking step we will evaluate the following state of the art
methods, which have an increasing complexity: HA [24],
RI [33], MLRI [34], ARI [47], LSSC [43], RCNN [57] and
JCNN [21]. We are interested in algorithms with low or
moderate power; only HA, RI, MLRI and RCNN have a
reasonable complexity in this context. For the denoising
step we shall likewise consider two classic hand-crafted al-
gorithms, CBM3D and nlBayes.

Fig. 2 (c1) and (c2) shows an example where noisy CFA
images with noise of standard deviation σ0 were first demo-
saicked by RCNN and then restored by CBM3D assuming
a noise parameter σ = σ0. The output of CBM3D with
σ = σ0 has a strong residual noise. Similar results are also
obtained with nlBayes (see the supplementary material). To
understand empirically the right noise model to adopt af-
ter demosaicking, we simulated this DM&DN pipeline

Table 1. Denoising after demosaicking DM&DN , where DN is
CBM3D [13] with noise parameter equal to C σ0, while noise in
the raw image has standard deviation σ0 = 20. Each row shows
the CPSNR result for C ranging from 1.0 to 1.9. Each column
corresponds to a different demosaicking method DM . The best
result of each column is in red, the second best is in green and
the third in column is in red, the second best is in blue. The best
factor C for all methods is C ' 1.5, the same is true for different
values of σ0 as well (see supplementary material).

C HA GBTF RI MLRI ARI LSSC RCNN

1.0 28.15 27.58 28.46 27.95 28.70 27.19 27.28

1.1 28.56 28.15 28.83 28.44 28.98 27.89 28.05

1.2 28.85 28.55 29.08 28.80 29.18 28.43 28.67

1.3 29.05 28.81 29.23 29.03 29.29 28.78 29.09

1.4 29.18 28.96 29.31 29.17 29.35 29.00 29.34

1.5 29.23 29.00 29.32 29.22 29.35 29.06 29.41
1.6 29.25 29.01 29.30 29.23 29.33 29.06 29.41
1.7 29.25 28.97 29.26 29.20 29.29 29.02 29.36
1.8 29.22 28.92 29.20 29.15 29.23 28.95 29.28

1.9 29.17 28.85 29.13 29.08 29.17 28.88 29.20

Table 2. RMSE between original and demosaicked image for var-
ious demosaicking algorithms in presence of noise of std σ0.

σ0 HA GBTF RI MLRI ARI LSSC RCNN

1 5.04 5.10 4.17 4.06 3.72 4.40 3.21

5 6.78 6.87 6.12 6.10 5.74 6.36 5.59

10 10.18 10.27 9.53 9.74 9.09 9.96 9.65

20 17.75 17.83 16.77 17.56 16.06 18.16 18.04

40 32.67 32.76 30.77 32.64 29.36 33.68 33.98

60 46.14 46.35 43.43 46.11 41.44 48.11 47.95

for different levels of noise σ0, and applied CBM3D after
demosaicking with a noise parameter corresponding to σ0

multiplied by different factors (1.0, 1.1, · · · , 1.9).
The results are shown in Table 1, where the classic color

peak signal-to-noise ratio (CPSNR) [4] is adopted as a log-
arithmic measure of the performance of the algorithms. It is
defined by

CPSNR(X) = 10 log10
2552∑

X=R,G,B MSE(X)/3 , with

MSE(X) = 1
|Ω|

∑
(i,j)∈Ω(X̂(i, j)−X(i, j))2,

where X̂ denotes the ground truth image and X is the esti-
mated color image. From 1.0 to 1.9, the CPSNR increases
first and then decreases. The best values are distributed on
the lines with factors from 1.4 to 1.7. A similar behavior
was also observed using nlBayes for denoising as well as
for other levels of noise (see the supplementary material).



(a) AWG (b) HA (c) MLRI (d) RCNN

Figure 3. AWG noise image and demosaicking noise with stan-
dard deviation σ = 20 for respectively HA, MLRI, RCNN. Last
row: the color spaces (in standard (R,G,B) Cartesian coordinates)
of each noise, presented in their projection with maximal area.
As expected, the AWG color space is isotropic, while the color
space after demosaicking is elongated in the luminance direction
Y = R +G+ B and squeezed in the others. This amounts to an
increased noise standard deviation for Y after demosaicking, and
less noise in the chromatic directions.

This does not mean that the overall noise standard devi-
ation has increased after demosaicking. Table 2 reports the
standard deviation of the demosaicked noise for different
noise levels. Which is estimated as the mean RMSE of de-
mosaicked images from the McMaster-IMAX [63] dataset
(Imax). We observe that for low noise (σ0 = 1) there is
a serious demosaicking error, of about 4, not caused by the
noise, but by the demosaicking itself. However, for σ0 > 10
we see that the RMSE of the demosaicked image tends to
roughly 3/4 of the input noise.

At first sight, this 3/4 factor seems to contradict the
observation that denoising with a parameter 1.5σ0 yields
better results. This leads us to analyzing the structure of
the demosaicked noise. For that we use an orthonormal
Karhunen-Loève transform to maximally decorrelate the
color channels [45, 48]. This type of transforms are com-
monly used in denoising algorithms [40] such as CBM3D
and nlBayes. Here, we use a transform in which the lumi-
nance direction is Y = R+G+B√

3
and the orthogonal vectors

C1 and C2 are arbitrarily chosen as in [45].
Fig. 3 shows an image contaminated with AWG noise

with standard deviation σ0 = 20 and its resulting demo-
saicked noise for respectively HA, MLRI, RCNN. In the last
row of the figure, one can observe the color spaces (in stan-
dard (R,G,B) Cartesian coordinates) of each of these noises,
each cloud being presented in its projection with maximal
area. As expected, the AWG color space is isotropic and has
an apparent diameter proportional to 4σ0 ' 80. The color

Table 3. Variance and covariance of (R,G,B) and (Y,U, V )
(each first row) and the corresponding correlations (each second
row) between pixels (i, j) and (i + s, j + t), s, t = 0, 1, 2 first
for AWGN (a) with standard deviation σ = 20, then for its demo-
saicked versions MLRI (b) and RCNN (c)

(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 400.6 0.6 0.4 0.7 0.1 0.7 0.3 0.2 0.8
G 401.7 0.5 1.1 0.1 0.3 0.9 1.0 0.6 0.4
B 400.2 1.2 0.1 0.5 0.6 0.0 1.9 0.3 1.9

Y 399.6 1.1 0.1 0.3 0.1 0.9 0.2 0.5 1.2
C1 401.5 0.1 0.8 0.6 0.3 0.3 0.9 0.5 1.3
C2 401.4 0.2 1.8 0.9 0.2 1.0 0.6 0.2 0.2

(a) AWG noise
(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 361.4 128.4 18.9 130.5 46.4 20.6 21.6 21.5 19.8
G 298.9 93.0 0.5 95.1 19.1 0.9 1.0 0.5 3.8
B 370.9 127.8 19.3 130.4 46.0 20.6 21.2 20.3 19.0

Y 772.2 177.7 33.0 181.3 9.6 9.2 32.6 10.9 21.4
C1 164.8 107.1 43.7 108.8 72.8 29.3 46.1 30.2 10.1
C2 94.3 64.4 28.1 65.8 48.2 21.9 30.3 23.1 11.1

(b) MLRI
(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 359.9 47.8 5.0 51.9 21.8 17.8 5.1 19.4 9.2
G 354.8 32.6 4.4 36.3 5.8 8.4 6.4 8.8 0.6
B 356.0 49.6 6.3 53.7 23.6 18.8 7.3 19.4 9.2

Y 972.3 69.0 20.8 76.4 3.6 18.6 28.9 17.3 2.2
C1 55.1 33.8 15.3 36.0 26.1 14.6 19.0 16.6 11.8
C2 43.3 27.3 12.3 29.4 21.5 11.7 16.0 13.7 9.4

(c) RCNN

space of the demosaicked noise is instead elongated in the
luminance direction Y to about 6σ0 ' 120 and squeezed
in the others. This amounts to an increased noise standard
deviation for Y after demosaicking, and much less noise in
the chromatic directions.

This is confirmed by Table 3, which shows variances
and covariances of (R,G,B) and (Y,C1, C2) respectively
for an AWG noise with σ0 = 20, and then for the demo-
saicked noise obtained after demosaiciking it with MLRI
and RCNN. In Table 3 (a) these statistics are computed on a
pure white noise image with σ = 20. Hence the variance of
Y is 400, as the (R,G,B) → (Y,C1, C2) transform is im-
plemented as an isometry of R3. The variance of Y grows
with the sophistication of the demosaicking: 772 for MLRI
and 972 for RCNN. In contrast, the demosaicked noise is
reduced in the chromatic axes C1 and C2, with a standard
deviation divided by a factor between 2 and 3. But, Table 3
also shows that the residual noise on C1 and C2 is strongly
spatially correlated, it is therefore a low frequency noise,
which will require stronger filtering than white noise to be



Table 4. Covariances (each first row) and correlations (each sec-
ond row) of the three color channels (R, G, B) of the demosaicked
noise, when the initial CFA white noise satisfies σ0 = 20.

R G B

R
361.42 224.39 201.41

1.0000 0.6826 0.5501

G
224.39 298.94 216.86

0.6826 1.0000 0.6512

B
201.41 216.86 370.92

0.5501 0.6512 1.0000

(a) MLRI

R G B

R
359.90 320.44 302.85

1.0000 0.8967 0.8461

G
320.44 354.83 299.85

0.8967 1.0000 0.8437

B
302.85 299.85 355.99

0.8461 0.8437 1.0000

(b) RCNN

Table 5. Comparison in CPSNR(dB) of average restoration per-
formance between DN&DM and DM&DN for a fixed level of
noise σ0 = 20. We test two denoisers DN namely CBM3D, and
nlBayes, and 1.5DN means that if noise level is σ0, the noise
level parameter for the denoising method DN is σ = 1.5σ0.
Both denoisers can be adapted to handle mosaics in theDN&DM
schemes (see in the text). The best result of each column is marked
with a box . The best result of each line is in red and the second
best one is in green.

DNAlgorithm HA RI MLRI ARI RCNN

C
B

M
3D

DN&DM 28.11 28.45 27.97 28.69 27.27

DM&DN 28.15 28.46 27.95 28.70 27.28

DM&1.5DN 29.24 29.32 29.22 29.36 29.41

nl
B

ay
es

DN&DM 28.17 28.17 28.17 28.18 28.28
DM&DN 28.67 28.99 28.57 29.21 28.02

DM&1.5DN 29.29 29.26 29.22 29.31 29.36

removed. This table also shows that the Y component of
the demosaicked noise remains almost white.

This leads to a simple conclusion: since image denoising
algorithms are guided by the Y component [13, 39], we can
denoise with methods designed for white noise, but with a
noise parameter adapted to the increased variance of Y .

To understand why the variance of Y is far larger than
the AWG noise it comes from, let us study in Table 4 the
correlation between the three channels (R,G,B) in the de-
mosaicked noise of MLRI and RCNN. We observe a strong
(R,G,B) correlation, which is caused by the “tendency to
grey” of all demosaicking algorithms. Assuming that the
demosaicked noisy pixel components (denoted ε̃R, ε̃G, ε̃B)
have a correlation coefficient close to 1 then we have

Y = ε̃R+ε̃G+ε̃B√
3

∼
√
3N(0, σ0).

This factor of about 1.7 corresponds to the case with maxi-
mum correlation. Our observation of an optimal factor near
1.5 responds to a lower correlation between the colors.

3. Experimental evaluation

We evaluated the proposed framework using two classic
noise free color image datasets: Kodak [20] and Imax [63],
composed on 18 and 25 images respectively. We also
evaluated it on a set of 14 real raw images from the SIDD
dataset [1], which comes with ground truth acquisitions.

Evaluation of DN&DM and DM&DN strategies. We
performed simulations with the schemes: DN&DM and
DM&DN . The considered demosaicking methods range
from classic to very modern: HA[24], RI[33], MLRI[34],
ARI [47], and RCNN[57]. For the denoising stage two
classic hand-crafted patch-based denoising algorithms were
considered: CBM3D [13] and nlBayes [39]. As commented
in the introduction, both methods can be adapted to han-
dle mosaics (in the DN&DM setting). In the case of
CBM3D this amounts to applying the method by Danielyan
et al. [14], while for nlBayes this is done by denoising the 4-
channel image associated to the mosaic. The schemes were
applied the mosaic images of the Imax dataset corrupted by
AWGN with standard deviations σ0 ∈ [1, · · · , 60].

From Table 5, we can see that DM&DN with parame-
ter σ = σ0 is not better than DN&DM , but DM&1.5DN
(which denotes denoising DN with parameter σ = 1.5σ0)
beats clearly DN&DM . Other values of σ0 are shown
in the supplementary material, though with similar behav-
ior. This might explain why many researchers think that the
scheme DN&DM was superior to the scheme DM&DN .

In addition to the good CPSNR results, one important ad-
vantage of theDM&DN schemes is the high visual quality
of the final restored images. Fig. 2 demonstrates the differ-
ences between the various solutions (based on BM3D) ob-
tained on image #3 of the Imax dataset. To save space, only
crops of the full-color results and corresponding differences
with the ground truth are shown here.

The DN&DM scheme shown in Fig. 2 (b1) and (b2)
uses BM3D-CFA [14] for denoising; we can observe some
minor checkerboard artifacts. From Fig. 2 (c1) and (c2),
we can deduce that there is no checkerboard effect but that
much noise remains in the restored image by DM&DN
schemes with parameter 1.0σ0. The result ofDM&1.5DN
(Fig. 2 (d1) and (d2)) are smooth without checkerboard ef-
fects. Fig. 2 (e1) and (e2) correspond to the outputs of the
CNN joint denoising and demosaicking method JCNN [21].

One can observe thin structures in the upper left corner
of Fig. 2 (a1), but they disappear in the restored image by
DN&DM . The proposed DM&1.5DN scheme restores
them. The second column of Fig. 2 illustrates a similar situ-
ation in which thin details are recovered by DM&DN and
DM&1.5DN but not in the others.

In short, it appears that the DM&DN scheme with an
appropriate parameter (namely DM&1.5DN ) outperforms
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Figure 4. Demosaicking and denoising results on an image from
the Kodak dataset with σ = 20. We compare aDN&DM scheme
BM3D+RCNN [14], with three DM&1.5DN : RCNN+CBM3D,
RCNN+nlBayes and MLRI+BM3D. As a reference we also in-
clude the result of a joint CNN method JCNN [21]. (Limited to
σ ≤ 20, as the network is not trained beyond that level.)

the competition in terms of visual quality. This is due to the
fact that it efficiently uses spatial and spectral image char-
acteristics to remove noise, preserve edges and fine details.
Indeed, contrary to the DN&DM schemes, DM&1.5DN
does not reduce the resolution of the noisy image. Using
an DN&DM scheme ends up over-smoothing the result.
It comes to no surprise that JCNN performs slightly better
than the other methods; however, it is much more computa-
tionally demanding and only works for σ ≤ 20.

In a systematic comparison between the schemes involv-
ing CBM3D and nlBayes, schemes with CBM3D proved
to perform slightly better. Furthermore, CBM3D is about
four times faster than nlBayes. Hence, the following exper-
iments are more focused on CBM3D.

Comparison with methods from the literature. To
complete this comparison we went back to all DN&DM
schemes proposed in the literature, and performed a sys-
tematic comparison for the two classic Kodak and Imax
datasets. These databases are always used in demosaick-
ing evaluations, because they illustrate different challenges
of the demosaicking problem, Imax being difficult by its
color contrast, and Kodak challenging for the recovery
of fine structure. In Tables 6 and 7 we compare rep-

resentative DN&DM methods from the literature with
the best DM&DN methods identified above (all of them
DM&1.5DN ):

– The two best DM&1.5DN from on Table 5 are
considered. Namely, RCNN for demosaicking fol-
lowed by CBM3D (denoted RCNN+CBM3D) or nlBayes
(RCNN+nlBayes) for denoising.

– We also consider a “low-cost” DM&1.5DN combina-
tion using MLRI [34] for demosaicking and CBM3D for
denoising (MLRI+CBM3D).

The considered DN&DM methods from the literature are:

– The BM3D-CFA algorithm proposed in [14] to avoid the
checkerboard effects resulting from independently apply-
ing BM3D to the color phases of CFA images. We eval-
uate BM3D-CFA [14] followed by Hamilton Adams de-
mosaicking (BM3D+HA), as well as followed by a state-
of-the-art RCNN demosaicking [57] (BM3D+RCNN).

– The Park et al. [50] CFA denoising framework apply-
ing PCA to the RGB color space in the Kodak dataset
and then removing noise in each channel by BM3D. This
preprocessing is advantageous for the Kodak image set,
but inadequate for the Imax image set. We evaluate this
framework [50] with BM3D [12] followed by the RCNN
demosaicking [57] (Park+RCNN).

– The PCA-CFA method proposed in [61] is a spatially-
adaptive denoising based on principal component anal-
ysis (PCA) that exploits the spatial and spectral corre-
lations of CFA images to preserve color edges and de-
tails. We evaluate PCA-CFA [61] followed by DLMM
demosaiciking [62] (PCA+DLMM) and RCNN demo-
saicking [57] (PCA+RCNN).

– Finally, as a reference, we include the CNN-based joint
denoising and demosaicking (JCNN) of [19, 21]. But its
results are only available for noise with σ ≤ 20 because
the network is not trained beyond that level.

From Tables 6 and 7 we see that the DM&DN method
RCNN+CBM3D as well as RCNN+nlBayes yield the best
results on the Kodak dataset, and the margin with respect to
the best DN&DM method (BM3D+RCNN, i.e. BM3D-
CFA [13] with RCNN [57]) is quite large: more than 1.5dB
on average. In Fig. 3 we compare some results obtained
on an image from the Kodak dataset. From the upper-left
extract we can see that textures are better restored with
RCNN+CBM3D and MLRI+CBM3D, while JCNN intro-
duces some defects. From the extract we see that the
DM&1.5DN methods preserve much more details than
BM3D+RCNN, and the result is comparable to JCNN.

On the Imax database RCNN+CBM3D has the high-
est CPSNRs on high noise levels, by a small gap though.



Table 6. Comparison of the results (CPSNR in dB) between dif-
ferent denoising and demosaicking methods for the Imax image
set. The best result of each line is in red, the second best one is in
green and the third best one is in blue.

DN&DM DM&1.5DN

BM3D BM3D Park PCA PCA RCNN RCNN MLRI

σ + + + + + + + + JCNN

HA RCNN RCNN DLMM RCNN CBM3D nlBayes CBM3D

1 34.63 38.53 35.37 33.99 37.52 38.36 38.42 36.52 38.59
5 33.43 35.62 32.86 32.69 34.87 35.39 35.29 34.60 33.48

10 31.84 32.92 30.06 30.73 31.89 32.75 32.59 32.36 33.09
20 29.22 29.55 26.86 27.57 27.99 29.41 29.25 29.22 29.79
40 25.50 25.51 23.86 23.50 23.57 25.52 25.09 25.39 –

60 21.55 21.34 21.75 20.89 20.89 22.78 22.31 22.63 –

Av 28.09 28.88 26.89 26.71 27.53 28.99 28.72 28.58 –

Table 7. Comparison of the results (CPSNR in dB) between dif-
ferent denoising and demosaicking methods for the Kodak image
set. The best result of each line is in red, the second best one is in
green and the third best one is in blue.

DN&DM DM&1.5DN

BM3D BM3D Park PCA PCA RCNN RCNN MLRI

σ + + + + + + + + JCNN

HA RCNN RCNN DLMM RCNN CBM3D nlBayes CBM3D

1 34.70 40.55 40.36 38.19 39.12 40.98 40.98 38.52 41.15
5 32.84 34.89 34.87 34.99 35.42 36.55 36.42 35.71 34.13

10 30.34 30.93 30.85 31.83 32.01 33.36 33.18 32.94 33.27
20 27.59 27.70 27.42 28.11 28.14 29.98 29.87 29.70 29.95
40 24.79 24.78 24.88 24.15 24.08 26.71 26.29 26.44 –

60 22.58 22.55 23.19 21.77 21.70 24.42 23.93 24.16 –

Av 27.47 28.35 28.36 27.96 28.09 30.19 29.93 29.64 –

For low noise levels BM3D+RCNN is better, but the dif-
ference with RCNN+CBM3D is very small. The joint
denoising-demosaicking network JCNN [21] yield the best
results on the Imax dataset for σ ≤ 20 yet, the margin
with respect to RCNN+CBM3D is again small. Over-
all, by looking at the average CPSNR we can say that
RCNN+CBM3D (DM&1.5DN ) is indeed much more ro-
bust than BM3D+RCNN.

Evaluation on real images. We evaluated on a set of 14
raw images taken from the Small SIDD dataset [1]. For sim-
plicity, the selected images correspond to phones from the
same manufacturer. We adopted the simple pipeline pro-
posed by the authors, which yields photo finished images
that can be compared with the ground truth. The considered
methods (RCNN+CBM3D, CBM3D+RCNN, and JCNN)
were applied at the demosaicking stage (in linear space).
Before any denoising step (DN ) we applied a VST (squared
root [5]), which whitens the noise, and invert it afterwards.

28.46dB 34.30dB 35.84dB

28.82dB 37.03dB 38.48dB

noisy demosaicked DN&DM DM&1.5DN

Figure 5. Details of a real images (enhanced contrast) from the
SIDD [1] dataset. From left to right: noisy input (demosaicked),
BM3D+RCNN , and RCNN+CBM3D.

Table 8. Average CPSNR over 14 raw images taken from the Small
SIDD dataset [1]. The reported average noise level is scaled to the
range 0-255.

mean σ CBM3D+RCNN RCNN+CBM3D JCNN
7.65 38.19 39.64 38.54

The noise level was estimated using [11] and provided to
the denoising algorithms and JCNN.

Table 8 reports the average CPSNR obtained on these
images and the average of the estimated noise levels (after
whitening). These values are consistent with the simulated
results obtained on the Kodak database (Table 7). The result
in Fig. 5, and the supplementary material, support the case
in favor of the DM&1.5DN schemes (RCNN+CBM3D).

4. Conclusions
This paper analyzed the advantages and disadvantages

of denoising before demosaicking (DN&DM ) schemes,
versus demosaicking before denoising (DM&DN ), to re-
cover high quality full-color images. We showed that for
the DM&DN schemes a very simple change of the noise
parameter of the denoiser DN coped with the structure of
demosaicked noise, and led to efficient denoising after de-
mosaicking. This has allowed a better preservation of fine
structures often smoothed by the DN&DM schemes. Our
best performing combination in terms of quality and speed
is a DM&1.5DN scheme, where demosaicking DM is
done by a fast algorithm RCNN [57] followed by CBM3D
denoising 1.5DN with noise parameter equal to 1.5σ0.
Nevertheless, we anticipate joint demosaicking and denois-
ing methods obtained by deep learning to win the end game
when they become more compact or rapid.
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