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® Review and analyze advantages and drawbacks of ditferent strategies of Denoising and Denosaicking. 5 — 20 marked with a box. The best result of each line is in red and
e Analyze the demosaicking noise. the second best one is in green,
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e Find the best way to reconstruct full color images from a noisy mosaic. DN Algorithm HA Rl MLRI ARl RCNN
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Demosaicked noise is correlated and have higher standard deviation in the luminance component

This is caused by the “tendency to grey" of demosaicking algorithms

e Demosaicking First, or Denoising First? The answer is that Demosaicking First is better than
We propose to denoise the demosaicked image using a higher o (denoted DM&1.5DN)

Denoising First, but the DN step should set the noise parameter with 1.50).

This strategy can be applied to many demosaicking and denoising algorithms e The DM&1.5DN scheme. Demosaicking DM is done by a fast algorithm RCNN [3] followed by
CBM3D denoising 1.5DN with noise parameter equal to 1.50p, which performs best in terms of
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each noise, presented in their projection with maximal area. (c) RCNN



