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Review: supervised training

We have a set of data points with corresponding labels

(@1,91), (x2,92), - - o, (Tm,ym), withaz; € X,y €Y, (e.g. X =R%, Y =R?)
We assume that the data pairs are |ID samples of a joint PDF: (z;,y;) ~ p(z,y).
We want a function Fp : X — Y such that Fy(z) “=" y, for (z,y) ~ p(z,y).

To that end we define a loss function £ which measures the error between Fy(z) and

y, and set the parameters 6 to minimize the expected loss:
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Supervised training needs labels
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Supervised training needs labels




Labelling is expensive (or impossible)

In the best case label is expensive: requires several hours of effort.
» classification

» segmentation

Sometimes, it requires expert knowledge:
» medical imaging

» satellite imagery

For some problems the ground truth is not know, or very difficult to measure:
» motion estimation
» depth estimation

» image restoration



In practice: small labeled dataset

We need strategies to cope with small datasets. We have see already:

» data augmentation: synthetically generate new data by applying transforms to

existing data

» regularization: prevent overfitting to the dataset

These help, but are insufficient if dataset is very small.



Transfer learning

A function (e.g. a network) Fg : Xs — Vg has been trained to trained to solve a

source problem:
S = (Xs,Vs,ps(x,y) = ps(2)ps (y|z), Ls).
Can it be used to help training a second target problem?

T = (X1, Yr,pr(2,y) = pr(z)pr(y|®), £T).
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Transfer learning

Most usual cases:

(Inductive) transfer learning: Input spaces are the same, but task changes:

(Xs,ps(z)) = (X7, pr(=)),

Yr # Vs or ps(ylz) # pr(ylz) or by # Ls.

Example: detect objects in natural images — segmentation of

natural images

Domain adaptation: Input spaces are different, but task is the same:

Xs # X1 or ps(x)) # pr(z),

Yr =Ys and b = £g.

Example: sentiment classification in hotel reviews — sentiment

classification in reviews of technological items
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Examples of domain adaptation problems
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Intuition: why is transfer learning possible

Output
(object identity)

3rd hidden layer
(object parts)

2ud hidden layer
(corners and

contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Weights in first layers are low-level features (related to input domain). In deeper
layers more complex higher level concepts begin to appear (related to task).

Figure from [Deep Learning, Goodfellow, Bengio and Courville, 2016]



Intuition: why is transfer learning possible

Figures from [Visualizing and Understanding Convolutional Networks. Zeiler, Fergus, 2013]
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Intuition: why is transfer learning possible

Layer 2

Figures from [Visualizing and Understanding Convolutional Networks. Zeiler, Fergus, 2013]
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Intuition: why is transfer learning possible

Figures from [Visualizing and Understanding Convolutional Networks. Zeiler, Fergus, 2013]
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Intuition: why is transfer learning possible

Figures from [Visualizing and Understanding Convolutional Networks. Zeiler, Fergus, 2013]
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Intuition: why is transfer learning possible

Figures from [Visualizing and Understanding Convolutional Networks. Zeiler, Fergus, 2013]
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Intuition: why is transfer learning possible

https://wuw.youtube.com/watch?v=AgkfIQ4IGaM

Demo video from one of the authors of [Understanding Neural Networks Through

Deep Visualization, Yosinski et al. 2015.]
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Transfer learning in practice

Early layers
> low-level features (edges, textures, corners, blobs)
FC-4096
» seem to be independent from the task
MaxPool
Conv-512 » networks for different tasks have similar filters
Conv-512
e More specific
Deeper layers
Conv-512
Repoc > higher level concepts (faces, text, clothing)
Conv-256
Conv.256 More generic » could be transfered between tasks requiring
MaxPool
Conv-128 similar semantic concepts
Conv-128
MaxPool
c -
c::: Final layers (head of the network)
[image ]

» computes the required output: classifier,

localization, etc.
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Transfer learning in practice: fine-tune from ImageNet

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset
ez

Reinitialize [*+— Train these
this and train
With bigger
dataset, train
more layers
> Freeze these
> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Final layers have to be replaced with new ones and trained from scratch.

The weights of the “freezed” layers can be kept constant, or used as initialization for
a fine-tuning with a small learning rate. The larger the training set, the more layers

we can fine-tune. This is a trial-and-error process.
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Transfer learning in practice

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers

This and the previous 2 slides were taken from [CS231n course of Stanford University]
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Transfer learning is widely used

Drivers of ML success in industry

Supervised learning
Transfer learning

Commercial
success

Unsupervised learning
Reinforcement learning
Time

- Andrew Ng, NIPS 2016 tutorial

Andrew Ng likes transfer learning and plots with unlabeled axes.
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Transfer learning in detection and localization

...when labeled training data is scarce, supervised pre-training for an auxiliary
task, followed by domain-specific fine-tuning, yields a significant performance
boost.

[R-CNN, Girshick et al. 2014]

classifier

proposals / / All other layers (...) are initialized by pre-

/

£ training a model for ImagelNet classification

Region Proposal Network
”"-‘“" maps [36], as is standard practice.

[Faster R-CNN, Ren et al. 2016]
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Transfer learning in boundary detection

Single-Pass Base ONN Multiscale Contours Multsscale UCMs
g |
—@ ‘
Fine detals Toe € \ \ ‘
1.a>; !
| S
Combined
Hicrarchacal

Segmentation

Comarse defextions

\& Contour Orientations

Features are extracted from different scales of a base CNN, and fed to a contour
detection network. The base CNN is initialized using a classification network trained
on ImageNet.

[Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks,

Maninis et al. 2017]
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Transfer learning in semantic segmentation

forward/inference

— backward /fearning g\c\,

-t A A
‘ [ o ¢ o i £
|

2
We adapt contemporary classification networks (AlexNet [22], the VGG net [34],
and GoogleNet [35]) into fully convolu- tional networks and transfer their learned
representations by fine-tuning [5] to the segmentation task.

[Fully Convolutional Networks for Semantic Segmentation, Long et al. 2014]
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Transfer learning in medical image segmentation

We start from the VGG [18] network (... ) the fully connected layers at the end

of the network are removed.
(-..) we fine-tune the entire architecture for 20000 iterations. Due to the lack

of data, the learning rate is set to a very small number.
[Deep retinal image understanding, Maninis et al. 2016]
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Transfer learning in video object segmentation

Parent Network Test Network

Bt an DAVS Iaaining st Fise-tured on frovee 1 of test sequence

The base CNN is pre-trained on ImagelNet for

image labeling, which has proven to be a very

(R85 ki VidsaoR s Ghep ueatation, Caelles et
al. 2017]

Figure 4. Tv FCN i The main
branch (1) is complemented by a contour branch (2) which im-
proves the localization of the boundaries (3).
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How transferable are features in a deep NN?

[Yosinski et al., 2014] transfer classificaction tasks A to B (two halfs of ImageNet).
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XnY: first n layers trained for task A, remaining final layers trained from scratch for B.

XnYT: same, with fine-tuning.

32


https://arxiv.org/abs/1411.1792

How transferable are features in a deep NN?

) ; 5: Transfer + fine- -tuning omprOves qenelalizauon

0.64
3 3: Fine-tuning recovers co-adapted interactions
N e Lo e T T T YYY"Y"YYYYOYXY>@
§ 062 2: Performance drops
res due to fragile
{ co-adaptation
Z 0.60) 4: Performance
> drops due to
S representation
5 s ificit
% 0,58 PRy,
2
.

0.56)

0.54

0o 1 2 3 4 5 6 !
Layer » ot which network is chopped and retrained

Strong purple: BnB drops at n = 4,5. Surprinsing: re-training last layers from scratch
can't recover original performance. Fagile co-apadaptation: neurons in consecutive
layers adapt to each other. Retraining from scratch is not able to find the adapted

weigths. Soft purple (BnB™): Fine-tuning finds the co-adapted weights.
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How transferable are features in a deep NN?

) ; 5: Transfer + fine- -tuning umproves genelanzallon

0.64
3 3: Fine-tuning recovers co-adapted interactions
e L e L TTTTTTTTITTTTTTTTTTTTT"TYYyYyD>
§ 062 2: Performance drops
re due to fragile
‘; co-adaptation
2 060 4: Performance
> drops due to
3 representation
5 s ificit
% 0,58} pecificRy
2
3

0.56{

0.54

0 1 2 3 4 5 6 7
Layer » ot which network s chopped and retrained

Strong red: AnB starts decreasing at n = 4 (lost co-adapted neurons), and continue
to drop for larger n. This shows that deeper layers are specific for task A and do not
transfer well to B. Soft red (AnB™1): Fine-tuning fixes this, and it even performs better

than the network trained on B, suggesting that transfer learning helps in generalization.
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How transferable are features in a deep NN?

0.00¢ |
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Red: tasks A and B chosen as random splits of ImageNet. Tasks A and B are similar.
Orange: tasks A and B chosen as splits of ImageNet in different classes (natural objects

vs. man-made objects). As A and B differ, tansfer performs worse.
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Taskonomy: a taxonomy of learning tasks

(1) Task-specific Modcling (1) Trasfer Modeling (1) Task Affinity (V) Compute Taxenomy
Lyt Norwah  Bekadg Lown Seimd  Reditng Normalization
2 A : »
& | D ! 0kopen] 1905 10 Sepm | N0 Keyit 350 Sepw W iy
& 'ﬂ "' AMP task affinities
oF 0 1 1 >
[y LT '._","-“'“‘
| 4 e . ’ n:;:
| wnnd g —— ——s s s Wy
v :*.. -
: L —

ﬁ 1 S S
f . SN ; NP ‘.—.:':u.-u‘:-
* 7 -

[Zamir et al., 2018]: compute transferability between different tasks.
1. Train encoder-decoder networks for 26 tasks using large training set (120k)

2. Compute all possible transfers: freeze encoder from source task, train decoder
from scratch using small traning set (1k or 16k)

3. The performance of each transfered network, is used to create normalized task
affinity matrix

4. Compute a graph selecting which are the best n tasks to transfer to the rest
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Taskonomy: a taxonomy of learning tasks

ObjectClass.  Scene Class.

Jigsaw puzde  Colorization c Semansic Scgm

3D Edges 2D Keypoints 3D x..-\-lmu,

Denoising Autoencoding

3D Curvature  Image Reshading

et Cam. POSE o

Cam. Pose .

Figure 3: Task Dictionary. Outputs of 24 (of 26) task-specific networks
for a query (top left). See results of applying frame-wise on a video here,
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Taskonomy: a taxonomy of learning tasks

3 order
228 order

Representation E4)  Transfer Function

Source Task Encoder Target Task Output
HFrozen (e.g., curvature) (e.g., surface normal)

Enconder-decoder networks are used. The encoder is a Resnet-50 and is transfered
between task. A decoder network is then trained for the target task (15 layer CNN
for when the output is an image, 2FC layers if output is of smaller dimension). The
authors also study higher order transfers, when the outputs of more than one encoder

are used by the decoder.
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Taskonomy: a taxonomy of learning tasks

Reshade Layout 2D Sepm  Autoenc.  Scratch

ﬁ

Surface Noemal

Reshado Layout 2D Segm  Autoenc.  Scratch

24D
Segmentatioa  Estmation
Tearafors Reslts (2% training images)

Example results obtained when transfering from 5 source tasks to surface normal es-
timation and 2.5D segmentation for different transfers. Clearly some tasks are more

similar than other.
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Taskonomy: a taxonomy of learning tasks

Astomcodng
Otject Chms. (1000) = AP =R WS Essass = - PR
Scene Class. H

Target

e  Eaiat e
araing Vo 5 B ! 1 .,El R
Ty

Source Source

Affinity matrix for first order transfers, before and after normalization (the normaliza-
tion is needed to accound for the different magnitudes in task losses). Each row shows

the transferability from a task to the others. Lower values means better transferability.
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Taskonomy: a taxonomy of learning tasks
§ Bedget 2 Sepervihien Bedget 8 Seperyhien Badget 15 Seperviien Badgot 24

Optimal transfer graphs found for different transfer orders and “supervision budget”

(how many source tasks are trained from scratch with supervision). "



Taskonomy: a taxonomy of learning tasks

Task
Depth

Scene Cls.

Sem. Segm.

Object Cls.
Normals
2.5D Segm.
Occ. Edges
Curvature
Egomotion

Layout

|2

o) |
AN |2%
174 ] 188
48 |35
2 0
N IED
16 9
23| .23
LU EED
6|

Warg.[#]

Agrawal |1}

Zharg | |

Noeoazi 4]

=
-4

Z

3 ”
2|8
0o
223|263
142 (153
EIED
A2 s
a6 | 07
7 -
a2
20 | 22
732 | 685
N A

Comparison against tranfer from ImageNet and from

supervised approaches.

networks trained with self-
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Representation (or feature) learning

An old problem in machine learning: find a representation of the data ¢(x) which is

compact and useful for posterior applications.

FAAAANNNANANANNNNNNNNNNSS
VIV MAEELLLL LM NNSNS S
VAV kbbb eweN NS~
VUV heIIII e~~~
QOO0 RIVIIII -
QOODNNINMM BN BIII G- ——
QOOONMMMMMNDBIII - ——
COOOMM M MMM MDD DD " o o
QOOOMMMMMMDDDD S e e e
QOO DM MMM M0 0B D o e e
QO MMM N0 0006w o o o o
OO MN 0" 0000000 8w
QAo o404 07070000 tm tn tn o o o o
GANNNNErr e~~~
Al rrrrrrrresa~s~
Jdaddddorrrrrrrrrean~
SddadddTrrrrrrrrraans
Sddddagororrrrrrrrrraan
SAdITTITTITTTTTTITIRIRINNN
SFTTTTTCCoOCCCODRNNNN

', [N NN # 00 e o0
FERERERERREHE
R HA
FEEHREHEHEHREHHEH
FHHEEHREEHEHEHH
DO H RO H O HOHD
EHHC RO HOHOHD
EHHH H R HHH HD
SR H EEHH H

oA

Manifold of known classes

For example: object classes should  The coordinates in ¢(z) € Rf should capture the main

modes of variation in the data.

be easily (linearly) separable

Figures from [Socher et al. 2013] and [Kingma, Welling, 2013]
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Unsupervised representation learning

Representation learning has been typically addressed using unsupervised training:

» No external labels are required
» The goal of the model is not to predict an output (with notable exceptions)
» Learn structure, patterns, modes of variation from unlabeled dataset

» Since no labels are needed, a lot of data is available
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Examples of unsupervised learning

original data space

PCA component space

—_—

s

Gene 3

Gene 1

Dimensionality reduction (e.g. PCA)

i P, i @)

R T

Density estimation

Figures from [Swagatam Das, 2019], [Eulertech] and [Matthias Scholz, 2006]
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Example of unsupervised representation learning: autoencoders

Input image Reconstructed image

"1 Latent Space d 7
Representation

Autoencoders have been proposed for learning a feature representation:

1.

a A~ W N

Given an image z, the encoder networks coputes the code ¢(x) (also embedding,

latent representation, etc).

. The decoder network reconstruct the image & = ¥ (p(z)) from the code p(z)
. Both networks are trained end-to-end by minimizing ||Z — z||?
. Even if the training requires a loss, this is considered often unsupervised training

. The decoder is mainly used for training, and then it is discarded. The encoder

@(z) can then be used for different tasks by appending a small network.
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Problems of autoencoders for representation learning

» The squared L? reconstruction loss does not encourage learning the high level

semantic concepts in the representation.

» To reproduce the same input image, the representation ¢(x) needs to encode all

factors or variation in the data.

» The relevance of the factors depends on the application: illumination changes are

irrelevant for face recognition, but relevant for head pose estimation.

Figure from [Pattabhi Ramaiah et al. 2015]
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Self-supervised representation learning

Self-supervised representation learning aims at solving these issues:

» Train a network to solve an auxiliary task for which we know the labels (the

pretext task)

» General principle: hide some information from the input, and train the network to

recover it.

» It is supervised learning, but does not require an external label, since the label is

part of the data (the hidden information)!!

» The pretext task has to be related to the real task we need to solve, so that we

can transfer.

49



Ten examples of pretext tasks

Fig. 2. The original patch of a cute deer is in the top left corner. Random transfo jons are applied,
resulting in @ variety of distorted patches. Al of them showd be classified into the same class in the pretext
tosk, (Imoge source: Dosovitskiy et al, 2015)

All figures and captions captured from [Lilian Weng, 2019] 50
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Ten examples of pretext tasks

Obpoctrven
CoevNet Mavisire
> plX 0] kel F() .
Rotsie O degroes Rintsied g Prodies 0 degrees rotatwn (y-0)
CoevNet Maximize prod.
> gl X yw1) - model FL) - Py
Rotaso %0 dagroes
Fontod inggez X Prodin 90 degroes sotation (y=1)
- ComvNet . Maxmue
> (X y=2) & ok £ Lg P'[l‘!)
Irrage X Rotate 180 degroes. porenng® Prodic 150 Seproes rosmon (yv=2)
> glX.y=d) i o
Rotaso 270 degrees ¥ Prodice 200 degeves rotasion (y=))

Fig. 3. INustration of seif-supenvised learning by rototing the entire input images. The model learns to
predict which rotation is applied. (Image source: Gidaris et al. 2018)

All figures and captions captured from [Lilian Weng, 2019]
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Ten examples of pretext tasks

Xi=

Fig. 4. Iustration of self-supervised learning by predicting the relative position of two random patches.
(Image source: Doersch et al., 2015)

All figures and captions captured from [Lilian Weng, 2019]
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Ten examples of pretext tasks

- P aw om =/
P ewlew = [
I L -:-— - )
E -—}- -/ r'/"‘/-'./ EP»
- o -{- - | o
: -~ L 4 -:- -

Fig. 6. lllustration of self-supervised learning by solving jigsaw puzzle. (Image source: Noroozl & Favoro,
2016)

All figures and captions captured from [Lilian Weng, 2019]
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Ten examples of pretext tasks

Tiox " Tyox I)ox

- LI '
Ale\No

convl
3x3x256
% fe6 4096

Fig. 7. Self-supervised representation learning by counting features. (Image source: Norooz), et al, 2017)

llkllkl

P A W
shared
weights

max{0, M - jc - t|*}

All figures and captions captured from [Lilian Weng, 2019]
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Ten examples of pretext tasks

Fig. 8. lllustration of context encoder. (Image source: Pathok, et al., 2016)

All figures and captions captured from [Lilian Weng, 2019] 55
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Ten examples of pretext tasks

/'!
x 1 ~ b
Raw Data "’xz e Predicted
L Data
Raw Data
Channels
Split-Brain Autoencoder

Fig. 9. lllustration of split-brain autoencoder. (Image source: Zhang et al., 2017)

All figures and captions captured from [Lilian Weng, 2019]
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Ten examples of pretext tasks

Query Tracked Negative D: pistance in deep feature space
{Fost Frame) (Last Frame)] (Random)
(b) Samese-triplet Network () Ranking Objective

Fig. 11. Overview of learning representation by tracking objects in videos. (a) Identify moving patches in
short traces; (b) Feed two related patched and one random patch Into a conv network with shared
welghts. (c) The loss function enforces the distance between related patches to be closer than the distance
between random patches. (Image source: Wang & Gupta, 2015)

All figures and captions captured from [Lilian Weng, 2019] 57
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Ten examples of pretext tasks

(b) Triplet Siamese network for sequence
verification
AbexNet architecture

(a) Data Sampling

Venoe Mathon i Positive Tuples
R /a m Togut Tuphe

fo fe A

N\
] !. ! 3

[ (e s

| ot .,‘ Negative Tuphes

w how -

|

N fa :
) G, S R B
15 fe le
i -
1o high 5 T ,
A

B
=
: B

wtan \ -
fe A A « Shasn! parusseters

Fig. 12. Overview of learning representation by valldating the order of video frames. (o) the data sample
process; (b) the model is a triplet siamese network, where all input frames have shared weights. (Image
source: Misra, et al 2016)

All figures and captions captured from [Lilian Weng, 2019]
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Ten examples of pretext tasks

Grayscale Video Embeddings
Reference A A Al Reference
Frame | @ e ‘, [ ] - Colors

shared weights

Target Aj Predicted
Frame ‘n 5 o ‘u Colors

Fig. 14. Video colorization by copying colors from a reference frame to target frames in grayscale.

(Image source: Vondrick et al. 2018)

All figures and captions captured from [Lilian Weng, 2019]
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State-of-the-art: contrastive representation learning

Problem with pre-text tasks

P Pre-text tasks are interesting, but they are far away from the supervised methots

(in image classification, object detection, segmentation)

» The choice of the pre-text class is crucial. How to choose the optimal pre-text

class for a given target task?

Contrastive representation learning: a more systematic approach to self-supervised

learning. (although there are a lot of cooking details that matter!!!)
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Intuition about the pre-text class

b g transfer
) #bits Ilvy:va)  performance

not enough 100 much
sis sgnal nose
I(x:y) hypcthi
—>

Hvyiva) = Tix:y) I(vaiva) Iiviiva) = I(x:y) H{vyiva)

Figure 1: (a) Schcmalic of multiview ¢ ive repi ion leamning, where an image is split into two views,
and passed th h two encoders to learn an embedding where the views are close relative to views from other
images. (b) Wbcn we h:nw: views that maximize I(v;. y) and /{vz:y) (how much task-relevant information is
ined) while mini g I(vy:va) (infor shared b views, including both task-relevant and
irrelevant information), there are three gimes: missing infe tion which leads to degraded performance due

0 I{vi;va) < I(x;y): excess noise which worsens generalization due to additional noise; sweer spor where
the only information shared between vy and vz is task-relevant and such information is complete.

» signal: variation factors related to the task we want to solve

» noise: variation factors unrelated to the task (nuisance factors)

[Yonglong Tian et al, 2020]
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Contrastive Predictive Coding for audio processing

Representation Learning with
Contrastive Predictive Coding

Aaron van den Oord Yazhe Li Oriol Vinyals
DeepMind DeepMind DeepMind
avdnoord@google.com yazhe®google.com vinyals@google.com
Abstract

While supervised learning has enabled great progress in many applications, unsu-
pervised k.umm; hun not seen such widespread adoption, and remains an important
and challenging or for artificial intelligence. In this work, we propose a
universal vised leaming apy h to extract useful representations from
high-dimensional data, which we call Contrastive Predictive Coding. The key in-
sight of our model is o learn such representations by predicting the future in larens
space by using powerful autoregressive models. We use a probabilistic contrastive
loss which induces the latent space to capture information that is maximally useful
to predict future samples. It also makes the model lrnunhlc by using negative
sampling. While most prior work has focused on eval B represe i for
a particular modality, we demonstrate that our approach is able to learn useful
rey ions achieving g performance on four distinct domains: speech,
i text and rei learning in 3D environments,




Contrastive Predictive Coding - main concept

max MI(c; 2)

- A

|Mrm.'rmm «m' |

Figure from Alex Graves

-l
l ©
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Contrastive Predictive Coding - main concept

g (o) i ) (T W, )
k(Tegpk,Ct) = €xXp | 2o Wi
> exp f(c, 2;) "
e Classify positive {31,22,23,24, z5526}
! example !
m
WM e =l S

Figure from Alex Graves H '
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Contrastive Predictive Coding - implementation

Je(Tesn,c)

T
Sfi(@t4k,ct) = exp (2¢+kaCt) Lx [103 Z: x Je(z;,

Figure from Alex Graves

]
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Contrastive Predictive Coding for image patches
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Contrastive Predictive Coding for image patches
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|
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256;1:::l |
\ input image |

Figure 4: Visualization of Contrastive Predictive Coding for images (2D adaptation of Figure 1).
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Contrastive Predictive Coding for image patches

Method | Top-1 ACC
Using AlexNet convs
Video [28] 29.8
Relative Position [11] 30.4
BiGan [35] 348
Colorization [10] 35.2
Jigsaw [29] * 38.1
Using ResNet-V2
Motion Segmentation [36] 27.6
Exemplar [36] 31.5
Relative Position [36] 36.2
Colorization [36] 39.6
48.7

Method | Top-5 ACC
Motion Segmentation (MS) 48.3
Exemplar (Ex) 53.1
Relative Position (RP) 59.2
Colorization (Col) 62.5
Combination of

MS + Ex + RP + Col 69.3
cpC 73.6

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of

architectural differences.

Table 4: ImageNet top-5 unsupervised classi-
fication results. Previous results with MS, Ex,

RP and Col were taken from [36] and are the

best reported results on this task.
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Contrastive Predictive Coding version 2

DATA-EFFICIENT IMAGE RECOGNITION
WITH CONTRASTIVE PREDICTIVE CODING
Olivier J. HénafT, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi,
Carl Doersch, S. M. Ali Eslami, Aaron van den Oord

DeepMind
London, UK

ABSTRACT

Human observers can learn to rec ize new ies of images from a hand-

ful of examples, yet doing so with hine per i ins an open

We hypothesize that data-efficient recognition is enabled by rcpmscnmuons which
make the variability in natural signals more predictable. We therefore revisit and
improve Contrastive Predictive (‘odmg. an unxupcrvmcd objective for learning
such representations. This new i m produces features which support

state-of-the-art linear classification accuracy on the ImageNet dataset. When used
as input for non-linear classification with deep neural networks, this representa-
tion allows us to use 2-5x Ics-. Inbcls than cl&\slﬁcr\ muncd dm:ctly on image
pixels. Finally, this pervised ion Iy s transfer
learning to object detection on PASCAL VOC-2007, surpassing l'ully supervised
pre-trained ImageNet classifiers.
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Contrastive Predictive Coding version 2

Parallel Implementation
with PixeICNN (masked conv) and 1x1 conv

InfoNCE Loss

x5;€X fk(zj' cl)
Negatives

1. Other patches within image
2. Patches from other images

cN — _E [log ka(zl'Fk) c‘)

|
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Contrastive Predictive Coding: details matter!

Contrastive Predictive Coding 2.0 (CPCv2)

Train CPC on unlabeled ImageNet
Train as long as possible (500 epochs) - 1 week

Augment every patch with a lot of spatial and color
augmentation [extremely crucial]

Effective number of negatives = number of instances *
number of patches per instance = 16 * 36 = 576
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Contrastive Predictive Coding: details matter!

CPC v1 CPC v2
+MC +BU +LN +RC +HP +LP +PA
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Contrastive Predictive Coding - results
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-e- ResNet trained on CPC
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Contrastive Predictive Coding - more results

Method Architecture Top-5 accuracy

Labeled data 1% 5% 109%  50% 100%
fSupervised baseline ResNet-200 44.1 752* 839 931 952%
Methods using label-propagation:

Pseudolabeling [63] ResNet-50 51.6 - 824 - -
VAT + Entropy Minimization [63] ResNet-50 47.0 - 834 - -
Unsup. Data Augmentation [61] ResNet-50 - - 88.5 - -
Rotation + VAT + Ent. Min. [63] ResNet-50 x4 - - 91.2 - 95.0
Methods using representation learning only:

Instance Discrimination [60] ResNet-50 39.2 - 774 - -
Rotation [63] ResNet-152 x2  57.5 - 86.4 - -
ResNet on BigBiGAN (fixed) RevNet-50 x4 552 737 788 855 87.0
ResNet on AMDIM (fixed) Custom-103 674 818 858 91.0 92.2
ResNet on CPC v2 (fixed) ResNet-161 77.1 87.5 905 95.0 96.2

ResNet on CPC v2 (fine-tuned) ResNet-161 77.9* 886 912 9567 965
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Contrastive losses on full images: instance discrimination

1. MoCo
el 2. SimCLR
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The problem: we need a lot of negative samples
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MoCo

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He  Haogi Fan  Yuxin Wu  Saining Xie  Ross Girshick

Facebook Al Research (FAIR)
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Three different approaches for intance discrimination

contrastive loss

q k
A

encoder q encoder k
N N
ol z*

(a) end-to-end

contrastive loss

b~ gk <

q k

" A
sampling

S ’

¢ memory

4 bank

(b) memory bank

contrastive loss

. gk
q k
B -
) momentum
53 a*
(c) MoCo
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MoCo: main idea

contrastive loss
A

1 » similarity <
q ko ky ks ...
T queue
momentum
encoder S

ke ke ke
uery y A : 4
&Y Ba" &y° Es o ws

79



MoCo: main idea

] k
1 |
Encoder Momentum Encoder
[ i O =’:”Tf‘:;"i m)ﬂJ Eq T log
N 7
q \ P k

Contrastive Loss

exp(q-k+/7)

b3

K
1=0

exp(q-ki/T)
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MoCo: pseudo-code

Algorithm 1 Pseudocode of MoCo in a PyTomh-ﬁke style.

k: encoder networkas for query and key
dicticnary as a queue of K keys (CxK)

—anw

B
a0

g

]

3

o

£

8

f . k.params = f_q.params ¢ initialize
for x in loader: # load a mini
x.q = aug(x) a randomly
X K = aug(x) # another ran

q = f_qg.forward(x_q) ¢ gquerles: NxC
k = £ k.forward(x_k) # keoys: NxC
k = k.detach() # no gradient to keys

positive logits: Nxl

l_pon - bmm(q.view(N,1,C), k.view(N,C,1))

¢ negative loglita: NxK
1_neg =~ m(q view(N,C), queue.view(C,K))

§ logita: Nx{l+X)
logits = cat([l_pos, l_neg)], dim=1)
¢ contrastive loss, Egn. (1)

labels = zerxos(N) # positives are the O-th
loas = CrossEntropyloss(logita/t, labels)

¢ SGD update: query network
loss.backward()
update (f_q.params)

¢ momentum update: key network
f k.paramas = mef_k.params+(l-m)ef_qg.params

¢ update dictionary

enqueues (queue, k) # anqueus the current mini
dequ o the earllest minibat

eue (queue) # deq

been: batch matrix multiplication: men: matrix
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SimCLR: what if we just use a lot of TPUs?

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith' Mohammad Norouzi' Geoffrey Hinton '
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SimCLR: additional transform before the loss

Maximize agreement
Zi = > Z

g9(+) Ig(‘)

h; +— Representation —» h;
A
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SimCLR: pseudo-code

Algorithm 1 SimCLR’s main | ing algorithm.
input: batch size N, temperature 7, structure of f, g, 7.
for sampled minibatch {z }{*_, do
forall k € {1...., N}do
draw two augmentation functions t~7, ¢/ ~T
# the first augmentation
Tk = t(xk)

ha—y = f(Z21-1) # representation
2ok-y = g(hak-y) # projection
# the second augmentation
Ty = t'(xx)
hy = f(:éu) # representation
2ok = g(hax) # projection
end for
foralli€ {1,...,2N}and j € {1,..., 2N} do

8 =z z;/(rllzillll=;5]l) # pairwise similarity
end for
define £(i, j) as £(i, j)=—log ‘.-...'-'T.P,(ffu'm-. 5
L= 5 TN [6(2k—1,2Kk) + €(2k, 2k—1)]
update networks f and g to minimize £
end for
return encoder network f
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SimCLR: performance
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MoCo v2: takes some ideas from SimCLR

unsup. pre-train ImageNet VOC detection

case MLP aug+ cos epochs| acc. APsg AP APy5
supervised 76.5 81.3 535 588
MoCo vl 200 60.6 81.5 559 626
(a) v 200 66.2 82.0 564 62.6

(b) v 200 63.4 82.2 56.8 632

(c) v v 200 67.3 825 572 639

(d) v v v 200 67.5 824 570 63.6

(e) v v v 800 71.1 825 574 64.0
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MoCo v2: takes some ideas from SimCLR

80
¥50up. R50(2x) ®s5up. R50(4x)
*R50(2x)* <
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<
- ®R101(2xR152(2%)
*pso+ T R50(2x)
®R34(4x)
- o TR152
865 e ®R18(4x)
- ®Rs50
®R34(2x)
&0 ®R18(2x)
= ®*R34
50 | ®*R18
0 50 100 150 200 250

300 350 400 450
Number of Parameters (Millions)
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MoCo v2: takes some ideas from SimCLR

unsup. pre-train ImageNet

case aug+ cos epochs batch acc.
MoCo vl [6] 200 256 60.6
SimCLR [2] v 200 256 61.9
SimCLR [2] v 200 8192 66.6
MoCo v2 v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v 1000 4096 69.3
MoCo v2 v 800 256 71.1




Summary

Representations learned with self-supervision using contrastive losses rival with
supervised representation learning, and supervised training.
Active field of research, with a lot of involvement from main tech companies

(Google & Facebook)

Although contrastive learning seems elegant and generic, there are still a lot of
details that matter: what augmentation, which learning rate schedule,

architecture, hyperparameters, etc.

All results are very, very recent (some from a few days!!) - all must be taken with

a grain of salt.
There are many methods we didn't cover. In particular:

- BYOL: doesn’t use negative samples!!

- SwAV: claims state-of-the-art results without huge batches nor memory bank
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Multi-task learning

Multi-task network: A single network with

shared layers and tasks specific outputs . F

Multi-task loss combining individual losses

le = iy, Lﬁep(h . Lk;! ' 1 mﬂmls
» Don't need to have all labels for all training T ‘ ] ‘ I
1 ] )

samples Dot Kayooee ] S. Normal
» If tasks are related, the shared weights | |

benefit from the training samples for all \ ! ’

tasks Shared Layers I
» Related to transfer learning, but different: [

tasks are learned simultaneously, and works 3

better if number of training samples is

similar for all tasks
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Multi-task learning: famous examples

box
rogresscn
;—"" connected

’ layers

cassfication

fixed size feature map

RolPool layer

feature map

convolutional backbone

vt classification

fully conmected
ayers

fixed size festure map

RolAlign layer

feature map

convolutional backbone

Faster R-CNN [Ren et al. 2015] and Mask R-CNN [He et al. 2017] are multi-task

networks. The convolutional backbone is shared for different tasks (object

classification, boundix box prediction and object mask).

Figure from [lldoo Kim]
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Few-shot learning and meta-learning

cat

bird

flower

cow

one-shot training set k-shot training set

bird

flower

cow

Few-shot learning algorithms aim at learning new tasks (e.g. classify new classes)

only from a few labeled examples (humans have this ability).

Few-shot learning from scratch is impossible: start from a network pre-trained for

related tasks!

Meta-learning: pre-train a network so that it's ready to learn from few examples

(learning to learn).
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Domain adaptation

Dataset Optimal transport Clasification on transported sanples
‘ .
| 4 [ 1
112 2 , A
dt 4 | +its
| {
{
m
(
T..(")
)
Clhen 2 | T
Sommapien x! } . + Sanmpden T (X + Saphs l‘ x
Sampios X Samgdes x Sameplen x!
—  Clasifier s X ~ Classiier o T [x

Solve the same task on two different domains. Homogeneous domain adaptation is
when both feature spaces coincide Xs = X , but the data distributions differ
ps(z) # pr(z) (domain drift).

Some approaches try to reduce the domain shift by computing a mapping ¢ such that

ps(e~ ' (x)) = pr(z).

Figure from [Optimal transport for domain adaptation, Courty et al. 2016]
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Domain adaptation
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ps(e™ (@) = pr(e™" (2)).

A domain discriminator is trained simultaneously to classify ¢(z) in source and
target domains. The feature extraction network is trained to confound the

discriminator, while at the same time solving the task.

[Domain—adversarial training of neural networks, Gannin et al. 2016]
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