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Review: supervised training

We have a set of data points with corresponding labels

(x1, y1), (x2, y2), . . . , (xm, ym), with xi œ X , yi œ Y, (e.g. X = Rd, Y = Rt)

We assume that the data pairs are IID samples of a joint PDF: (xi, yi) ≥ p(x, y).

We want a function F◊ : X æ Y such that F◊(x) “=” y, for (x, y) ≥ p(x, y).

To that end we define a loss function ¸ which measures the error between F◊(x) and

y, and set the parameters ◊ to minimize the expected loss:

Remp(◊) = 1
m

mÿ

i=1

¸(F◊(xi), yi)

¸ ˚˙ ˝
empirical risk

æmæŒ E{¸(F◊(x), y)} = R(◊)¸ ˚˙ ˝
risk

.
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Supervised training needs labels
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Labelling is expensive (or impossible)

In the best case label is expensive: requires several hours of e�ort.

I classification

I segmentation

Sometimes, it requires expert knowledge:

I medical imaging

I satellite imagery

For some problems the ground truth is not know, or very di�cult to measure:

I motion estimation

I depth estimation

I image restoration
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In practice: small labeled dataset

We need strategies to cope with small datasets. We have see already:

I data augmentation: synthetically generate new data by applying transforms to

existing data

I regularization: prevent overfitting to the dataset

These help, but are insu�cient if dataset is very small.
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Transfer learning

A function (e.g. a network) FS : XS æ YS has been trained to trained to solve a

source problem:

S = (XS , YS , pS(x, y) = pS(x)pS(y|x), ¸S).

Can it be used to help training a second target problem?

T = (XT , YT , pT (x, y) = pT (x)pT (y|x), ¸T ).
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Transfer learning

Most usual cases:

(Inductive) transfer learning: Input spaces are the same, but task changes:

Y
]

[
(XS , pS(x)) = (XT , pT (x)),

YT ”= YS or pS(y|x) ”= pT (y|x) or ¸T ”= ¸S .

Example: detect objects in natural images æ segmentation of

natural images

Domain adaptation: Input spaces are di�erent, but task is the same:

Y
]

[
XS ”= XT or pS(x)) ”= pT (x),

YT = YS and ¸T = ¸S .

Example: sentiment classification in hotel reviews æ sentiment

classification in reviews of technological items
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Examples of domain adaptation problems

12



Contents

Intro: limitations of supervised learning

Transfer learning accross tasks

Examples of transfer learning fine-tuning from ImageNet

Some more insight

Self-supervised representation learning

Other related topics

13



Intuition: why is transfer learning possible

Weights in first layers are low-level features (related to input domain). In deeper

layers more complex higher level concepts begin to appear (related to task).

Figure from [Deep Learning, Goodfellow, Bengio and Courville, 2016]
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Intuition: why is transfer learning possible

Figures from [Visualizing and Understanding Convolutional Networks. Zeiler, Fergus, 2013]
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Intuition: why is transfer learning possible

https://www.youtube.com/watch?v=AgkfIQ4IGaM

Demo video from one of the authors of [Understanding Neural Networks Through

Deep Visualization, Yosinski et al. 2015.]
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Transfer learning in practice

Early layers

I low-level features (edges, textures, corners, blobs)

I seem to be independent from the task

I networks for di�erent tasks have similar filters

Deeper layers

I higher level concepts (faces, text, clothing)

I could be transfered between tasks requiring

similar semantic concepts

Final layers (head of the network)

I computes the required output: classifier,

localization, etc.
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Transfer learning in practice: fine-tune from ImageNet

Final layers have to be replaced with new ones and trained from scratch.

The weights of the “freezed” layers can be kept constant, or used as initialization for

a fine-tuning with a small learning rate. The larger the training set, the more layers

we can fine-tune. This is a trial-and-error process.
22



Transfer learning in practice

This and the previous 2 slides were taken from [CS231n course of Stanford University]
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Transfer learning is widely used

Andrew Ng likes transfer learning and plots with unlabeled axes.

25



Transfer learning in detection and localization

. . . when labeled training data is scarce, supervised pre-training for an auxiliary
task, followed by domain-specific fine-tuning, yields a significant performance
boost.

[R-CNN, Girshick et al. 2014]

All other layers (. . . ) are initialized by pre-
training a model for ImageNet classification
[36], as is standard practice.

[Faster R-CNN, Ren et al. 2016]
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Transfer learning in boundary detection

Features are extracted from di�erent scales of a base CNN, and fed to a contour

detection network. The base CNN is initialized using a classification network trained

on ImageNet.

[Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks,

Maninis et al. 2017]
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Transfer learning in semantic segmentation

We adapt contemporary classification networks (AlexNet [22], the VGG net [34],
and GoogLeNet [35]) into fully convolu- tional networks and transfer their learned
representations by fine-tuning [5] to the segmentation task.

[Fully Convolutional Networks for Semantic Segmentation, Long et al. 2014]
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Transfer learning in medical image segmentation

We start from the VGG [18] network (. . . ) the fully connected layers at the end
of the network are removed.
(. . . ) we fine-tune the entire architecture for 20000 iterations. Due to the lack
of data, the learning rate is set to a very small number.

[Deep retinal image understanding, Maninis et al. 2016]
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Transfer learning in video object segmentation

The base CNN is pre-trained on ImageNet for
image labeling, which has proven to be a very
good initialization to other tasks.[One-Shot Video Object Segmentation, Caelles et

al. 2017]
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How transferable are features in a deep NN?

[Yosinski et al., 2014] transfer classificaction tasks A to B (two halfs of ImageNet).

XnY: first n layers trained for task A, remaining final layers trained from scratch for B.

XnY+: same, with fine-tuning.
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How transferable are features in a deep NN?

Strong purple: BnB drops at n = 4, 5. Surprinsing: re-training last layers from scratch

can’t recover original performance. Fagile co-apadaptation: neurons in consecutive

layers adapt to each other. Retraining from scratch is not able to find the adapted

weigths. Soft purple (BnB+): Fine-tuning finds the co-adapted weights.
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How transferable are features in a deep NN?

Strong red: AnB starts decreasing at n = 4 (lost co-adapted neurons), and continue

to drop for larger n. This shows that deeper layers are specific for task A and do not

transfer well to B. Soft red (AnB+): Fine-tuning fixes this, and it even performs better

than the network trained on B, suggesting that transfer learning helps in generalization.
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How transferable are features in a deep NN?

Red: tasks A and B chosen as random splits of ImageNet. Tasks A and B are similar.

Orange: tasks A and B chosen as splits of ImageNet in di�erent classes (natural objects

vs. man-made objects). As A and B di�er, tansfer performs worse.
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Taskonomy: a taxonomy of learning tasks

[Zamir et al., 2018]: compute transferability between di�erent tasks.

1. Train encoder-decoder networks for 26 tasks using large training set (120k)

2. Compute all possible transfers: freeze encoder from source task, train decoder

from scratch using small traning set (1k or 16k)

3. The performance of each transfered network, is used to create normalized task

a�nity matrix

4. Compute a graph selecting which are the best n tasks to transfer to the rest
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Taskonomy: a taxonomy of learning tasks
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Taskonomy: a taxonomy of learning tasks

Enconder-decoder networks are used. The encoder is a Resnet-50 and is transfered

between task. A decoder network is then trained for the target task (15 layer CNN

for when the output is an image, 2FC layers if output is of smaller dimension). The

authors also study higher order transfers, when the outputs of more than one encoder

are used by the decoder.
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Taskonomy: a taxonomy of learning tasks

Example results obtained when transfering from 5 source tasks to surface normal es-

timation and 2.5D segmentation for di�erent transfers. Clearly some tasks are more

similar than other.
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Taskonomy: a taxonomy of learning tasks

A�nity matrix for first order transfers, before and after normalization (the normaliza-

tion is needed to accound for the di�erent magnitudes in task losses). Each row shows

the transferability from a task to the others. Lower values means better transferability.
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Taskonomy: a taxonomy of learning tasks

Optimal transfer graphs found for di�erent transfer orders and “supervision budget”

(how many source tasks are trained from scratch with supervision). 41



Taskonomy: a taxonomy of learning tasks

Comparison against tranfer from ImageNet and from networks trained with self-

supervised approaches.
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Representation (or feature) learning

An old problem in machine learning: find a representation of the data Ï(x) which is

compact and useful for posterior applications.

For example: object classes should

be easily (linearly) separable
The coordinates in Ï(x) œ Rf should capture the main

modes of variation in the data.

Figures from [Socher et al. 2013] and [Kingma, Welling, 2013]
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Unsupervised representation learning

Representation learning has been typically addressed using unsupervised training:

I No external labels are required

I The goal of the model is not to predict an output (with notable exceptions)

I Learn structure, patterns, modes of variation from unlabeled dataset

I Since no labels are needed, a lot of data is available
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Examples of unsupervised learning

Find clusters in dataset Dimensionality reduction (e.g. PCA)

Density estimation

Figures from [Swagatam Das, 2019], [Eulertech] and [Matthias Scholz, 2006]
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Example of unsupervised representation learning: autoencoders

Autoencoders have been proposed for learning a feature representation:

1. Given an image x, the encoder networks coputes the code Ï(x) (also embedding,

latent representation, etc).

2. The decoder network reconstruct the image x̂ = Â(Ï(x)) from the code Ï(x)

3. Both networks are trained end-to-end by minimizing Îx̂ ≠ xÎ2

4. Even if the training requires a loss, this is considered often unsupervised training

5. The decoder is mainly used for training, and then it is discarded. The encoder

Ï(x) can then be used for di�erent tasks by appending a small network.
47



Problems of autoencoders for representation learning

I The squared L2 reconstruction loss does not encourage learning the high level

semantic concepts in the representation.

I To reproduce the same input image, the representation Ï(x) needs to encode all

factors or variation in the data.

I The relevance of the factors depends on the application: illumination changes are

irrelevant for face recognition, but relevant for head pose estimation.

Figure from [Pattabhi Ramaiah et al. 2015]
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Self-supervised representation learning

Self-supervised representation learning aims at solving these issues:

I Train a network to solve an auxiliary task for which we know the labels (the

pretext task)

I General principle: hide some information from the input, and train the network to

recover it.

I It is supervised learning, but does not require an external label, since the label is

part of the data (the hidden information)!!

I The pretext task has to be related to the real task we need to solve, so that we

can transfer.
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Ten examples of pretext tasks

All figures and captions captured from [Lilian Weng, 2019] 50
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Ten examples of pretext tasks
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State-of-the-art: contrastive representation learning

Problem with pre-text tasks

I Pre-text tasks are interesting, but they are far away from the supervised methots

(in image classification, object detection, segmentation)

I The choice of the pre-text class is crucial. How to choose the optimal pre-text

class for a given target task?

Contrastive representation learning: a more systematic approach to self-supervised

learning. (although there are a lot of cooking details that matter!!!)
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Intuition about the pre-text class

I signal: variation factors related to the task we want to solve

I noise: variation factors unrelated to the task (nuisance factors)

[Yonglong Tian et al, 2020]
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Contrastive Predictive Coding for audio processing
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Contrastive Predictive Coding - main concept
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Contrastive Predictive Coding - main concept
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Contrastive Predictive Coding - implementation
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Contrastive Predictive Coding for image patches
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Contrastive Predictive Coding for image patches
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Contrastive Predictive Coding for image patches
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Contrastive Predictive Coding version 2
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Contrastive Predictive Coding version 2
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Contrastive Predictive Coding: details matter!
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Contrastive Predictive Coding: details matter!
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Contrastive Predictive Coding - results
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Contrastive Predictive Coding - more results
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Contrastive losses on full images: instance discrimination
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The problem: we need a lot of negative samples
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MoCo
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Three di�erent approaches for intance discrimination
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MoCo: main idea
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MoCo: main idea
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MoCo: pseudo-code
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SimCLR: what if we just use a lot of TPUs?
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SimCLR: additional transform before the loss
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SimCLR: pseudo-code
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SimCLR: performance
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MoCo v2: takes some ideas from SimCLR
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MoCo v2: takes some ideas from SimCLR
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Summary

I Representations learned with self-supervision using contrastive losses rival with

supervised representation learning, and supervised training.

I Active field of research, with a lot of involvement from main tech companies

(Google & Facebook)

I Although contrastive learning seems elegant and generic, there are still a lot of

details that matter: what augmentation, which learning rate schedule,

architecture, hyperparameters, etc.

I All results are very, very recent (some from a few days!!) - all must be taken with

a grain of salt.

I There are many methods we didn’t cover. In particular:

- BYOL: doesn’t use negative samples!!

- SwAV: claims state-of-the-art results without huge batches nor memory bank
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Multi-task learning

Multi-task network: A single network with

shared layers and tasks specific outputs

I Multi-task loss combining individual losses

I Don’t need to have all labels for all training

samples

I If tasks are related, the shared weights

benefit from the training samples for all

tasks

I Related to transfer learning, but di�erent:

tasks are learned simultaneously, and works

better if number of training samples is

similar for all tasks
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Multi-task learning: famous examples

Faster R-CNN [Ren et al. 2015] and Mask R-CNN [He et al. 2017] are multi-task

networks. The convolutional backbone is shared for di�erent tasks (object

classification, boundix box prediction and object mask).

Figure from [Ildoo Kim]
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Few-shot learning and meta-learning

cat cat

bird bird

flower flower

cow cow

one-shot training set k-shot training set

I Few-shot learning algorithms aim at learning new tasks (e.g. classify new classes)

only from a few labeled examples (humans have this ability).
I Few-shot learning from scratch is impossible: start from a network pre-trained for

related tasks!
I Meta-learning: pre-train a network so that it’s ready to learn from few examples

(learning to learn).
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Domain adaptation

Solve the same task on two di�erent domains. Homogeneous domain adaptation is

when both feature spaces coincide XS = XT , but the data distributions di�er

pS(x) ”= pT (x) (domain drift).

Some approaches try to reduce the domain shift by computing a mapping Ï such that

pS(Ï≠1(x)) = pT (x).

Figure from [Optimal transport for domain adaptation, Courty et al. 2016]
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Domain adaptation

Find a common representation of the data Ï such that

pS(Ï≠1(x)) ¥ pT (Ï≠1(x)).

A domain discriminator is trained simultaneously to classify Ï(x) in source and

target domains. The feature extraction network is trained to confound the

discriminator, while at the same time solving the task.
[Domain-adversarial training of neural networks, Gannin et al. 2016] 95
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