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Transfer learning



Review: supervised training

We have a set of data points with corresponding labels

(z1,11), (z2,¥2); .- -y (Tm,ym), Wwithz; € X,4i €Y, (eg X = Ry = RY)
We assume that the data pairs are |ID samples of a joint PDF: (z;,y;) ~ p(z,y).
We want a function Fy : X — Y such that Fy(z) “"=" y, for (z,y) ~ p(z, y).

To that end we define a loss function £ which measures the error between Fy(z) and

y, and set the parameters # to minimize the expected loss:

RE™(6) = — 3 6(Fo 1), 1) Smosveo E{E(Fo(z),9)} = R(0).
i=1 A

~ J risk
~

empirical risk




Supervised training needs labels
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Supervised training needs labels




Labelling is expensive (or impossible)

In the best case label is expensive: requires several hours of effort.
» classification

» segmentation

Sometimes, it requires expert knowledge:
» medical imaging

» satellite imagery

For some problems the ground truth is not know, or very difficult to measure:
» motion estimation
» depth estimation

» image restoration



In practice: small labeled dataset

We need strategies to cope with small datasets. We have see already:

» data augmentation: synthetically generate new data by applying transforms to
existing data

» regularization: prevent overfitting to the dataset

These help, but are insufficient if dataset is very small.



Transfer learning

A function (e.g. a network) Fg : Xs — Vg has been trained to trained to solve a

source problem:

S = (Xs,Vs,ps(z,y) = ps(z)ps(ylz), £s).

Can it be used to help training a second target problem?

T = (X, Yr,pr(z,y) = pr(z)pr(ylz), £1).



Transfer learning

Most usual cases:

(Inductive) transfer learning: Input spaces are the same, but task changes:

(XS’ pS(z)) = (XT,pT(-T)),

Yr # Vs or ps(y|z) # pr(y|z) or by # Lg.

Example: detect objects in natural images — segmentation of

natural images

Domain adaptation: Input spaces are different, but task is the same:

Xs # Xr or ps(z)) # pr(z),

Yr =Ys and £r = £s.

Example: sentiment classification in hotel reviews — sentiment

classification in reviews of technological items



Intuition: why is transfer learning possible

Output
(object identity)

Jrd hidden layer
(object parts)

2ol hidden layer
(corners and

contours)

Ist hidden layer
(edges)

Visible layer
{input pixels)

Weights in first layers are low-level features (related to input domain). In deeper
layers more complex higher level concepts begin to appear (related to task).

Figure from [Deep Learning, Goodfellow, Bengio and Courville, 2016]



Intuition: why is transfer learning possible

Figures from [Visualizing and Understanding Convolutional Networks. Zeiler, Fergus, 2013]



Intuition: why is transfer learning possible

https://www.youtube.com/watch?v=AgkfIQ4IGaM

Demo video from one of the authors of [Understanding Neural Networks Through

Deep Visualization, Yosinski et al. 2015.]
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Transfer learning in practice

More specific

More generic

/

Early layers
» low-level features (edges, textures, corners, blobs)
» seem to be independent from the task

» networks for different tasks have similar filters

Deeper layers
» higher level concepts (faces, text, clothing)

» could be transfered between tasks requiring

similar semantic concepts

Final layers (head of the network)

» computes the required output: classifier,

localization, etc.



Transfer learning in practice: fine-tune from ImageNet

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset
-
—rcaom | \ Reinitialize s Train these
. this and train
Comvs12__ [ Convaiz | [ Conveia ] With bigger

[ Conva1z | [_Conv-$12_] dataset, train
[ MaxPool | [ MaxPost | [ MaxPooi ] more layers
[ Convaiz | |__Convs12 Senviia
[ Conv-512 | [ Convs12 Conv-512
[ MaxPool | [ MaxPool | > Freeze these

ot comase | Comvise | } Freeze these
[ Convase |
[ Mapost | [ WaxPool | :
[ Convizs | [ ConwAzs | Conv.128 Lower leaming rate
[_Comv12s | [ Conv-i28_| when finetuning;
[ MaxPool | [ WaxPool | 1/10 of original LR
[_Comss | [_Conved ] [ Cowss | | jsgood starting
Comes | Ceames ] o )
[image ] [image ] [image )

Final layers have to be replaced with new ones and trained from scratch.

The weights of the “freezed" layers can be kept constant, or used as initialization for
a fine-tuning with a small learning rate. The larger the training set, the more layers

we can fine-tune. This is a trial-and-error process.
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Transfer learning in practice

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers

This and the previous 2 slides were taken from [CS231n course of Stanford University|



Transfer learning in detection and localization

... when labeled training data is scarce, supervised pre-training for an auxiliary

task, followed by domain-specific fine-tuning, yields a significant performance

boost.
[R-CNN, Girshick et al. 2014]
classitier
: 7 All other layers (...) are initialized by pre-
w‘-w-y' / i training a model for ImageNet classification

nmwmw [36], as is standard practice.
lcature mags

[Faster R-CNN, Ren et al. 2016]

ons wyen
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Transfer learning in semantic segmentation

forward/inference

backward /learning

21
We adapt contemporary classification networks (AlexNet [22], the VGG net
[34], and GoogleNet [35]) into fully convolu- tional networks and transfer their

learned representations by fine-tuning [5] to the segmentation task.

[Fully Convolutional Networks for Semantic Segmentation, Long et al. 2014]



Transfer learning in medical image segmentation

Base Network Archiecture

We start from the VGG [18] network (... ) the fully connected layers at the end

of the network are removed.
(...) we fine-tune the entire architecture for 20000 iterations. Due to the lack

of data, the learning rate is set to a very small number.

[Deep retinal image understanding, Maninis et al. 2016]



Multi-task learning



Multi-task learning

Multi-task network: A single network with

shared layers and tasks specific outputs H . -

» Multi-task loss combining individual losses
Lm = ”’L‘g'ﬂ\Lm + ““l"Lm + “"\--u‘ul-Lm

» Don't need to have all labels for all training l l l I l I
samples - Rl
» If tasks are related, the shared weights ‘
gradients \ } /‘
benefit from the training samples for all N
» Related to transfer learning, but different: '

tasks are learned simultaneously, and works
better if number of training samples is

similar for all tasks

44



Multi-task learning: famous examples

box | ' box
slon classification regression dmmuuon

;—“‘" Rumaced
layers

fixed size feature map

M'v connected
layers

fixed size feature map

RoIPool layer RolAlign layer
feature map feature map
convolutional backbone convolutional backbone

Faster R-CNN [Ren et al. 2015] and Mask R-CNN [He et al. 2017] are multi-task
networks. The convolutional backbone is shared for different tasks (object

classification, boundix box prediction and object mask).

Figure from [lldoo Kim]
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Unsupervised representation learning



Unsupervised representation learning

Representation learning has been typically addressed using unsupervised training:

» No external labels are required
» The goal of the model is not to predict an output (with notable exceptions)
» Learn structure, patterns, modes of variation from unlabeled dataset

» Since no labels are needed, a lot of data is available



Examples of unsupervised learning

component space
A PCA ——————— 17—
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Find clusters in dataset Dimensionality reduction (e.g. PCA)

Pl gl w)

Density estimation

Figures from [Swagatam Das, 2019], [Eulertech] and [Matthias Scholz, 2006]
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Example of unsupervised representation learning: autoencoders

Input image Reconstructed image

Latent Space
Ropmonuﬂon

Autoencoders have been proposed for learning a feature representation:

1. Given an image z, the encoder networks coputes the code ¢(z) (also embedding,

latent representation, etc).
The decoder network reconstruct the image & = (¢(z)) from the code ¢(z)
Both networks are trained end-to-end by minimizing || — z||?

Even if the training requires a loss, this is considered often unsupervised training

ol - R

The decoder is mainly used for training, and then it is discarded. The encoder

@(z) can then be used for different tasks by appending a small network.

50



Self-supervised representation learning

Self-supervised representation learning aims at solving these issues:

» Train a network to solve an auxiliary task for which we know the labels (the

pretext task)

» General principle: hide some information from the input, and train the network to

recover it.

» It is supervised learning, but does not require an external label, since the label is

part of the data (the hidden information)!!

» The pretext task has to be related to the real task we need to solve, so that we

can transfer.



SImMCLR

Attract Attract

Pretext task: augmentation

Same object (different image) must
have a similar representation

Different objects must have different
representations

Augmentation

“A Simple Framework for Contrastive Learning of Visual Representations” Chen et al. 2020



Many other pretext task are possible

s » D
x- RN v-3 Bar? Ea?

Fig. 4. lilustration of self-supervised learning by predicting the relative position of two random patches.
(Image source: Doersch et al., 2015)

encoder

v
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=
v
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s
)

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

“Masked Autoencoders Are Scalable Vision Learners” He et al. 2021



Attention and transformers



Transformers step by step

A transformer processes sequential data, like text or time series, by capturing
complex dependencies and relationships between elements in the sequence using
self-attention mechanisms.

Je suis étudiant

\ ‘ \ Attention network

Encoder Hidden  ppcoger Hidden  ppcoder
State —» — State —»

RNN #1 RNN #2 RNN Hidden Hidden Hidden
State L) State o State >
Encoding stage

“Attention is all you need” Vaswan et al 2017.

Decoding stage



Transformers step by step

The encoder and decoders are a stack of identical layers or blocks (each with with
different weights). The encoder and decoder block share a core feature: the
self-attention mechanism
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Transformer block

A transformer block is a parameterized function class fp : R?*% — R™*4, If x € R"*? then
fo(x) = z where
QMW (i) = Wixi, KW(xi) =Wihixi, VIW(xi) =W xi, Whg Wik Who €R™, (1)
) (x;). KM (x;
o) — softmax; ((Q (xoﬁ (xm) | o)
H n
= W el ) Wen R, 5
h=1 j=1
w; = LayerNorm(x; + uj; 1, 81), 7,81 €RY, (4)
7z, = WIReLU(W{ w;), Wi € R*™ W, e R™*4,  (5)
z; = LayerNorm(u; + z;; Y2, 52), 2, B2 € R, (6)

A transformer block “transforms” a collection of n objects in R*d to another collection of objects in R d.

“The Transformer Model in Equations” John Thickstun, 2021



Transformer block

A transformer block is a parameterized function class fp : R?*% — R™*4, If x € R"*? then
fo(x) = z where

QW (x;) = Wi X, KM (x;) = Wi X, VP (x;) = WL i, Whg Whi, Whe € RF, (1)

(P (x. (h) (x -
(h) _ QY™ (x:), K™ (x5))
@, ; = softmax; ( h ; (2)
X wae Q
Scaled Dot-Product Attention
BEEE - - BB
MatMul
X
B - - BH
X wv \';
n=2 : Q J< %

:
@



Transformer block

A transformer block is a parameterized function class fp : R?*% — R™*4 If x € R"*? then
fo(x) = z where

QM (x;) = Wi X, K®(x;) = Wi 1 Xi, Vv (x;) = WL i, Whg Wi, Whe € RF, (1)

M) (x,). KM (x.
a§3>zsoftmaxj(<62 (xoﬁ (xg>>), 2)
H n
w =Y WL alvP(x)), W, € RF¥4, 3)
h=1 j=1
X wa Q
Scaled Dot-Product Attention
mm- -
MatMul
X Q 3 g




Transformer block

A transformer block is a parameterized function class fp : R?*% — R™*4 If x € R"*? then
fo(x) = z where

QM (x;) = Wil xi, KW (x;)=WExi, VW(x;)=WLxi, Wi Whg, Who € R>F, (1)

o — softman ((Q(") (xi>¢,5<<h> (xj>>) .
2% J L )

W, € RF*? (3)

J

H n
u; = Z Wl az(',};')V(h)(xj),
h=1 =1

X wa Q

EEE- [ - B

Multi-Head Attention

Linear

tt

Scaled Dot-Product
Attention

Kl
|

Linear PH Linear P Linear P



Transformer block

fo(x) = z where
Q(h)(x,) = W,qui, K(h) (XZ) = WhT,kxi, V(h) (XZ) = WhT,Uxi,
(QM (x:), K™ (x;))
\/E )
H n a2
u=> Wh>y ag,j)V(h)(xj),
j=1

u; = LayerNorm(x; + u}; 71, 51),
7, = Wi ReLU(W{ w;),
z; = LayerNorm(u; + z;; Y2, 52),

o = softmax; (

dxk
Wh.g» Whi, Whp € RPF,

Wc,h c kad,

717/81 € Rdr
W1 & lexm7 W2 & Rmxd,

Yo, B2 € R%.

A transformer block is a parameterized function class fp : R?*% — R™*4, If x € R"*? then
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Transformer block

A transformer block is a parameterized function class fp : R?*% — R™*4, If x € R"*? then
fo(x) = z where
QM (x;) = Wi xi, K ™) (x;) = Wi i Xi, VW (x;) = WL i, Whg Wi, Whe € RF, (1)
041(’;-) _ softmax; QW (x;), K™ (x;)) | These linear layers expand (from @
, Vk d to m) then reduce (back to d)
. . the dimension of the vectors
w =3 W3 el; V) Wop € R™, 3
h=1 j=1
w; = LayerNorm(x; + uj; 71, £1), 71,81 € R, (4)
z'/L. = Wér ReLU(WlT u,i), W, € Rdxm, Wy € Rde, (5) Multi-Head Attention
z; = LayerNorm(u; + z;; Y2, 52), Y2, B2 € R, (6)
% Q T
a—tl
B (0 ) e

Linear Linear Linear

N :2 X wVv Vv _ EB}
EEES -

@

V K Q



Transformer block

A transformer block is a parameterized function class fp : R?*% — R™*4, If x € R"*? then
fo(x) = z where
QM (x;) = Wi xi, K ")(x;) = Wi X3, VW (x;) = WL i, Whg Wi, Whe € RF, (1)
M (x,;). KM (x.
ozl(’hj) = softmax; (<Q (Xz)\,/E (XJ») ; (2)
H n
W= WIS oV ) Wen R, 0
h=1 j=1
u; = LayerNorm(x; + u}; 71, 51), 71,81 € R, (4)
z, = WIReLU(W{u;), Wi € R™™ W, e R™4,  (5)
z; = LayerNorm(u; + z;; Y2, 52), 2, B2 € R, (6)

The matrices W and Layernorm parameters are all learnable parameters.
If we suppose the weights a fixed, then the output of the block boils down to a stack of two linear layers.
However, since the weights a change with the input, a different linear is applied to each the n inputs!

The transformer ignores any sequence structure. If this structure exists, it must be explicitly encoded in the input vectors



Classic transformer parameters

e Dimension of the input x vectors d = 512

Dimension of the “projected” vectors k = 64

e The intermediate dimension of the linear o
layers is set to m = 2048 Probebiltes

e Attention heads H =8

e Transformer layers L=6 (in the encoder)

Add & Norm

Training consisted in predicting the next “word” in sentences.

[ Add & Norm | :
EeBA Muiti-Head
Attention
Scaled Dot-Product Attention Multi-Head Attention
N Add & Norm
% Masked
Multi-Head Multi-Head
Attention Attention
ncal
T = =) |
& A t . | J . | e—=,
Scaled Dot-Product g Positional @_@ 4 Positional
Attention ; Encoding 3 Encoding
I 1 Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Figure 1: The Transformer - model architecture.

lllustrations from “Attention is all you need” Vaswan et al. 2017.



Positional encoding!

A transformer is fundamentally a bag of features model, operating on a collection
of n unordered, d-dimensional features.

To model positions in a transformer, we need to express these positional
relationships as data.

For that each vector x in the sequence is attached with a “positional code” in the
form some extra dimensions.



Vision Transformer (ViT) Transformer Encoder

[ |
]
MLP ; Q
. |
Head I MLP ]
| I
Transformer Encoder : Norm ]
I
- I ( 5
"f%?'ﬁﬁeﬁ’ﬁ%'fé"“* 2 @5 @5 @5 IS
[c[?l);tsnsl]]?:;ﬁ‘:llging Llnear Pro_lectlon of Flattened Patches I A * A
I
a . . | | | I | IL I | Norm |
mmm—».lmﬁ Y S
W w E i Embedded ]
A I Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).



Vision Transformer (ViT)



Some attention maps from a ViT
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Text-Image models



Image + text

Why using text and images?

Appreciating natural language as a training signal — multi-modality
No burdensome label crafting
More scalable data (lots of it)

o
([
o
e Flexible zero-shot transfer



CLIP (Contrastive Language—Image Pre-training) 2021

e Encodes image, and text to similar
embeddings

e Proprietary dataset Weblmage Text
400M of various images with a caption
text from the internet — openCLIP
alternative 5B images

e Trained with contrastive learning,
maximizing cosine similarity of
corresponding image and text

e CLIP’s output image embeddings
contain both style and semantics

e Multi-modal understanding
o leverage natural language as a flexible
prediction space to enable generalization and
transfer

1. Contrastive pre-training

I1 'T1

IZ‘TI
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I1‘T2
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1'2»T3

I3’T3

IyTs

I1 'TN

IZ‘TN

I3 Ty
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https://github.com/mlfoundations/open_clip

CLIP contrastive losses

e Image/text embedding vectors:

e Image — text contrastive loss:

e Text — image contrastive loss:

e Loss function:

v=0(fo(X)) u=gu(ful®))
exp((vi, u;)/7)

e(v ! u) _ =
2 k=1 ¢xp({Vi, u)/7)

— log

exp((uq, vi)/7)
S ry exp({u;, vie)/7)

Ez(-u 1) = _ log

iv:(/\e(v.u)_*_ /\)egu.’v))



CLIP architecture

text and image have separate transformer encoders

visual encoder is VIiT (vision transformer)

text encoder is GPT-2 transformer

the fixed-length text embedding is extracted from [EOS] token position,
trained on 256 GPUs for 2 weeks



CLIP zero shot classification

Create for each CIaSS a text > embeddlng 2. Create dataset classifier from label text

e cosine similarity between image and text KR
embeddings %_,
[ lka =1
3. Use for zero-shot prediction . . 1 .
/ it .—> e L LT LT, LT - L
e Zero-shot classification, but fails on l

abstract or systematic tasks like counting



Segment Anything Model [Kirillov et al. 2023]

valid masks

' 'R confidence

%
3 score
image | _ —@-—) Ilgh:\gelgl;t = , confidence
encoder = mas ecoaer b LS, ( score
T T T y- , confidence
¢ EN < score
image prompt encoder
embeddings J
¢ N
down \ (xyfg/bg) T
sample
(x1,y1),(x2y2)
T I
mask points  box text

https://[segment-anything.com/demo



https://segment-anything.com/demo

Segment Anything Model (SAM)

e Itis a prompt-based zero-shot image segmentation model: It can segment
any object without prior training of the specific object class.

e Itis based on a Vision Transformer (ViT) pretrained with a self-supervised
Masked Autoencoder (MAE) strategy.

e SAM was trained using billions of images and high-quality segmentation
masks from diverse image sources (SA-1B Dataset).

e SAM is trained to respond to various prompts (points, boxes, text)

]

segmentation prompt




Segment Anything Model

Resolving ambiguity. With one output, the model will av-
erage multiple valid masks if given an ambiguous prompt.
To address this, we modify the model to predict multiple

output masks for a single prompt (see Fig. 3). We found
3 mask outputs is sufficient to address most common cases
(nested masks are often at most three deep: whole, part, and
subpart). During training, we backprop only the minimum
loss [15, 45, 64] over masks. To rank masks, the model pre-

dicts a confidence score (i.e., estimated IoU) for each mask.

Figure 3: Each column shows 3 valid masks generated by
SAM from a single ambiguous point prompt (green circle).



