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Presentation of the course

The objective of this course is to present a panorama of the main modeling
aspects and practical insights of neuronal networks (NN) for computer vision
applications.

Page: nhttps://gfacciol.github.io/M1_IAML_imagel

Lessons:

1. -- Thursday 7/10 (2E34): 14h00-16h30 - Intro NN, backprop and CNN for classification
2. -- Thursday 21/10 (2E34): 13h30-16h00 - Semantic segmentation
3. -- Thursday 18/11 (2E34): 14h00-16h00 - Object detection

4. -- Thursday 25/11 (1B14): 13h30-16h00 - Transfer learning and representation learning


https://gfacciol.github.io/M1_IAML_image/

Plan

e Image classification recap
e What is semantic segmentation

e Architectures



Last week recap



Image classification
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e Image classification is the prototypical computer vision problem
e A nontrivial problem:
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e Difficult to craft a program to solve it in an unrestricted setting



Data driven approaches
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1. Assemble a dataset of labeled images

2. Train a classifier using the labeled examples

3. Evaluate the classifier on new images
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Image classification in detail (side note)

e A classifier is a function f(x) =y
o x:input (image)
o y:output (classification)
y is not textual, but a vector of size N if we need to differentiate between N classes.
Each vector’s value represents the likelihood that the image belongs to the associated

class.
m  Animage can therefore be classified into one class, or multiple classes depending on

the classifier.

e Training is an optimization problem.



Classic approaches

e First extract features (SIFT, HOG...), then feed them to a classifier

e Allows to reduce the dimension of the classifier
e Features are invariant (to rotation, translation, scale, and illumination

changes) and allow to robustly classify
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Deep learning approach

Learn the features at the same time as the classifier

Features and classifier are coded in the layers of a DNN

The network is usually trained in an end-to-end way

Grahford, Hidden Cat
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Feedforward Neural
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e Neural networks are vaguely inspired on biological neurons
e A neuron/unit is modeled as a composition of an affine transformation
of its inputs x: w x + b and a non-linearity g (activation function)

f(z) = g(w-z+0b)

e Often are grouped in layers, where each unit is connected to all units
from the previous layer

y = g3(bs + W3- ga(by + W5 - g1(by + W7 - x)))



Perceptron
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e Binary valued function of its
inputs proposed in the 1950’s

output axon

activation
function

1 fw-2+b>0,
0 otherwise,
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e The discontinuous Heaviside function makes it hard to train by gradient
descent methods
e Sigmoid activation is a smooth approximation of Heaviside
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ACtivati O n F u n Cti O n S Activation function Equation Example 1D Graph

Unit step 0, 7<0, Perceptron
(Heaviside) d(2) = {0.5, z=0, variant B E—
1, z>0,
e RelLU: the most frequently
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Feedforward Neural Network architecture

e Feedforward networks are often organized in “layers”
The architecture can be specified by an acyclic graph of layers e.qg.

F(x) = falfa-1(...(f2(f1(2))...))

e Inimage processing and computer vision applications the input vector
has shape H x W x C (height, width, channel)

e ConvNets interpret a layer of neurons as a volume with dimensions
(H,W,Depth) , which preserves the spatial structure of the image

input layer
hidden layer 1 hidden layer 2



Activation Functions (side note)

The activation function in the output layer will determine whether the
classification is exclusive or not:

e Sigmoid: not exclusive

1
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e Softmax: exclusive
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Layers: convolution (Conv) co
0 0 ¢ a b

e A particular case of FC layer 00 0 ¢ a

y(i,7,1) = b + Z x(i+ s, +t,k)ws,t k)
(s,t,k)esSupp(w)
e Each output map is result of convolving the input with a kernel w,
e Conv layers involve many more connections than unique weights
i.e. many connections share the same weight
e Conv layers are translation equivariant

activation map

32x32x3 image

/ ' 5x5x3 filter
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convolve over all

spatial locations
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A classification network

VGG [Simonyan, Zisserman. 2014, Very deep convolutional networks for large-scale image recognition.]

e Encoder type architecture
e Final layers produce a vector of probabilities by applying softmax

224 x 224 x3 224 x 224 x 64 P(Y =1 | X = x) =

ll23<112x 128

28 x 28 x 512 TXTx512
2
= 1 1x1x4096 1x1x1000
e | ' —

/7 14x14x5
TiiE==x;

@ convolution+ReL.U
(1 max pooling
fully connected+Rel.U

@ softmax
/ W_J

Conv and pool layers FC layers




Layer: Pooling (POOL)

Spatial subsampling by binning of the input features

Max Pooling is the most common but average pooling also feasible
Provides more translation invariance in the feature maps

The current trend is to use strided convolution instead of pool

Single depth slice
111|124

5(6|7]|8
32010 ] 3|4
2 4

max pool with 2x2 filters
and stride 2 6 8




Optimization

e Stochastic gradient descent is simple
o Approximates the gradient of the risk with a small set of training samples (mini-batch)
o Computes the gradient of the mini-batch risk wrt all the parameters and updates them
o Learning rate z: controls the step size. It is a very delicate hyperparameter

Algorithm 24: Stochastic gradient descent.

1 while stopping criterion not met do

2 Sample mini-batch of m samples 1, xo, ..., x,, and corresponding targets v;;
3 Compute gradient estimate: A «— =V > 0(Fy(z:), yi)

4 Update the parameters: 0 «— 6 — 7 - Af

7 ‘ N — se0 e

= Momentum [
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e In practice use adaptive gradient

methods with momentum
o  We will use ADAM (Adaptive Moment
Optimization) [Kingma, Ba 2014]

e Second order methods also exist ...

Image credlt Alec Radford



Overfitting and validation

e Defining and estimating the capacity of a NN is still an active research
topic. But we can detect the symptoms of overfitting.

e The dataset is split in training, validation, and test sets
o Testis used to evaluate the final network. Should only be used once for the final
assessment of the performance of the model.
o Validation is used to monitor the generalization performance during training, allowing to
spot overfitting, and tune hyperparameters
o  When train and validation errors diverge too much it is probably due to overfitting

== TRAINING ERROR
= TESTING ERROR
UNDERFITTING OVERFITTING

BEST CAPACITY
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Semantic segmentation



Semantic segmentation

Semantic segmentation: associate label to different areas in an image.




Semantic segmentation

In other words, semantic segmentation consists of classifying each pixel of an
image.

— Classification problem.




Semantic segmentation

A classifier could indeed be trained to classify each pixel independently.

But two neighboring pixels share very similar neighborhood.

— There is a lot of redundancy when computing convolutions.



Semantic segmentation

Note

I\ As for classification, a ground truth
is necessary for training the neural
network.

A dataset must be constructed so that
each image is associated with a label
map. Some annotators are necessary.

Crowdsourcing is sometimes used...



Architectures



Architectures
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Solution 1: only apply convolutions.

Problem: need a lot of convolutions to have a good P> conv 3x3, RelU
* Batch Normalization

receptive field. P conv 1x1, Sigmoid

=P COPY
‘ max pool 2x2
t up-conv 2x2




What is the receptive field?

— How many pixels in the original image have been taken into account to
classify one pixel.

If convolutions used are 3x3:
1 layer : 3x3
2 layers: 5x5
N layers: (1+ Nx2)x (1 +Nx2)

We need 49 layers to have a receptive field of 99x99 px. Too much layers, not
enough receptive field.



Architectures
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What is the receptive field?

Get back spatial resolution:

e Interpolation ?

e Transposed convolution



Layers: transposed convolution

Conv Transposed Conv

e “Splats” the kernel on the output layer (similar to aggregation)
o Equivalent to a convolution with the rotated kernel if stride=1

e |Itis the transpose of the convolution matrix

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
Txd=Xa #+xTd=X"d
0 0 axr
a y 0 ay
z y z 0 0 O |b] ay + bz z x| |a| _ |az+bx
0 0 2z y z 0f|c| |bz+cy+dz 0 yi |b| by
d 0 =z bz
0 00 0

Example: 1D conv, kernel

sizoa3, gliiden?, pacdings1 When stride>1, convolution transpose is

no longer a normal convolution!




Layers: transposed convolution

Transposed convolution of size 2 and stride=2:

1 0 1 2

0 0 3 4
Image Transposed
convolution

2 0
40
0 0
0 0



Layers: transposed convolution

Transposed convolution of size 2 and stride=2:

0 1 1 2

0 0 3 4
Image Transposed
convolution

0 1
0 3
0 O
0 O



Layers: transposed convolution

Transposed convolution of size 2 and stride=2:

0 0 3 4
Image Transposed
convolution

2 | 1
43
0 0
0 0



Layers: transposed convolution

Transposed convolution of size 3 and stride=2:

1 0 1 2 3
0 0 4 5 6
7 | 8 |9
Image
Transposed
convolution

2 3
5 6
8 ' 9
0 O



Layers: transposed convolution

Transposed convolution of size 3 and stride=2:

0 1 1 2 3
0 0 4 5 6
7 | 8 |9
Image
Transposed
convolution

1] 2
4 5
7 8
0 0



Layers: transposed convolution

Transposed convolution of size 3 and stride=2:

1 1 1 2 3 1 3 | 5
0 0 4 5 | 6 4 | 9 11
7 | 8 |9 7 |15 | 17
Image
Transposed 01010
convolution

Output



Layers: transposed convolution

In summary:

e If convolution = stride — no overlapping

e If convolution > stride — overlapping. Can be useful for implementing a
“smart smoothing”.



Architectures

1 64 64 Solution 3: solution 2 + transposed convolution

Advantage: much larger receptive field (284x284px for 12

Ingtg 'E layers) + final resolution = image resolution
% S %‘ s 108 Problem: not very precise as the final 256x256px output layer
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Architectures

32x upsampled
image convl pooll conv2 pool2 convl pool3 convd poold convo poold conv6-7 prediction (FCN-32s)

Extract of Figure 3 of [1]
[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic
segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.



Architectures

1 64 64 Solution 4: solution 2 + transposed convolution 2x + combine
layer from earlier steps

In@’@ t Advantage: same as solution 3 + better resolution
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Architectures

1 64 64 Solution 5: go even further than FCN-16
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Architectures

/I\ A lot of variants exist!

32x upsampled
image convl pooll conv2 pool2 convl pool3 convd poold conv poold conv6-7 prediction (FCN-32s)

16x upsampled

2 7
poold ‘[ﬂ]-—J prediction (FCN-16s)
8x upsampled
4x conv7 prediction (FCN-8s)
2x pood | | | R —
pool3 [T T T |

Figure 3 of [1]
[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic
segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.



Architectures
FCN-32s FCN-16s FCN-8s Ground truth

kikikis

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

/

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic
segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.



Architectures

1 64 64 Solution 6: Continue FCN until best resolution 125 64 62 1
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+ add convolutions to the right side +
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Architectures

An 'All Terrain' Crack Detector Obtained by Deep Learning on Available
Databases, IPOL.



Architectures

2

FCN-32 FCN-8 Unet

An 'All Terrain' Crack Detector Obtained by Deep Learning on Available
Databases, IPOL.



Architectures

A lot of structures are inspired from U-net

Convolutional Encoder-Decoder

Input
e ,"’ dof Pooling Indices
-\ “ ' y,

RGB Image I conv + Batch Normalisation + RelU Segmentation
I Pooling M Upsampling Softmax

Output

Segnet: A deep convolutional encoder-decoder architecture for image
segmentation. Badrinarayanan, Kendall, Cipolla. 2017



Architectures

A lot of structures are inspired from U-net

The One Hundred Layers Tiramisu: Fully
Convolutional DenseNets for Semantic Segmentation
Jegou, Drozdzal, Vazquez, Romero, Bengio; 2017

B Dense Block
B Transition Down

[l Convolution
B Tronsition Up
--=>» Skip Connection Concatenation



Architectures

A lot of structures are inspired from U-net

=

LT ———— [ T :
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= = — ) Spatial Pyramid Pooling
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Spatial Pyramid Pooling =" 4 — ’ 4ax
—— fo.5x
3 0.5x 2x : .
to.sx 8x L — [ fo.sx
: Tosx lZX AT ——
= LT .
: = .
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Image Prediction Image Prediction Image . Prediction
(a) Spatial Pyramid Pooling (b) Encoder-Decoder (c) Encoder-Decoder with Atrous Conv

Fig. 1. We improve DeepLabv3, which employs the spatial pyramid pooling module (a),
with the encoder-decoder structure (b). The proposed model, DeepLabv3+, contains
rich semantic information from the encoder module, while the detailed object bound-
aries are recovered by the simple yet effective decoder module. The encoder module
allows us to extract features at an arbitrary resolution by applying atrous convolution.

Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation. Chen, Zhu, Papandreou, Schroff, Adam. 2018



Architectures

A lot of structures are inspired from U-net
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Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation. Chen, Zhu, Papandreou, Schroff, Adam. 2018



Homework due by 10/12/2020

The field of computer vision is constantly evolving. So Finding latest works on
a subject and determine their usefulness for our needs is an essential skill

Choose a modern semantic segmentation network (with available

pretrained weights and example usage code)
o Attention: the weights will be trained for a specific dataset

Identify an older pretrained semantic segmentation network trained on
the same dataset.

Build a “benchmark” dataset by selecting 4 (le minimum syndical) images
from the internet (that are not part of the dataset used for train/validate)
Analyze critically the results of the two networks in a report + notebook.



