
Neural Networks
and image

classification
M1 ARIA

Image and Video Processing

Gabriele Facciolo

Lecture 1 - 16-09-2024

Presentation of the course
The objective of this course is to present a panorama of the main modeling
aspects and practical insights of neuronal networks (NN) for computer vision
applications.

Page: https://gfacciol.github.io/M1_IAML_image/

https://gfacciol.github.io/M1_IAML_image/

Presentation of the course
The objective of this course is to present a panorama of the main modeling
aspects and practical insights of neuronal networks (NN) for computer vision
applications.

Page: https://gfacciol.github.io/M1_IAML_image/

Lessons:

https://gfacciol.github.io/M1_IAML_image/

Validation
Homeworks

 +

Binome Project / Bibliographical study of a subject of your interest

1. Think a subject
2. Check with me if it is feasible (must include some coding)
3. Do it!
4. Write a short report + presentation

Plan
● The image classification problem
● Feedforward neural networks

○ Perceptron
○ Deep multilayer networks
○ Types of layers
○ The power of deep architectures

● Training
○ Data
○ Loss and optimization
○ Backpropagation
○ Weight initialization and evolution

● Easing the learning
○ Batch Normalization
○ Regularization
○ Skip connections / Residual learning

Image
classification

Image classification

● Image classification is the prototypical computer vision problem
● A nontrivial problem:

● Difficult to craft a program to solve it in an unrestricted setting

Image classification is hard
Changes in illumination

Image classification is hard
Pose and shape changes

Image classification is hard
Intra-class variability

Image classification is hard
Occlusions

Data driven approaches
1. Assemble a dataset of labeled images

2. Train a classifier using the labeled examples

3. Evaluate the classifier on new images

Classic approaches
● First extract features (SIFT, HOG...), then feed them to a classifier
● Allows to reduce the dimension of the classifier
● Features are invariant (to rotation, translation, scale, and illumination

changes) and allow to robustly classify

SIFT in a nutshell

1. Keypoint localization

2. Keypoint descriptors 3. Keypoint matches

Why
gradients?

Edge-based features are physiologically plausible
● Hubel & Wiesel ‘62: visual cortex neurons

have a restricted receptive field. These
cells are sensitive to specific orientations
in the receptive field (like linear filters)

● Jones & Palmer ‘87 concluded
that Gabor filters fit well these
activations

Gabor filters decompose images in useful features

Gabor filters decompose images in useful features

Classic computer vision approaches
● First extract features (SIFT, HOG...), then feed them to a classifier
● Allows to reduce the dimension of the classifier
● Features are invariant (to rotation, translation, scale, and illumination

changes) and allow to robustly classify
●

Deep learning approach
● Learn the features at the same time as the classifier

● Features and classifier are coded in the layers of a DNN

● The network is usually trained in an end-to-end way

Classification vs Regression

● Classification
○ Outputs a discrete label
○ Finds decision boundary

● Regression
○ Outputs continuous variable
○ Finds a function

Neural networks

Feedforward Neural Networks

● Neural networks are vaguely inspired on biological neurons
● A neuron/unit is modeled as a composition of an affine transformation

of its inputs x: w x + b and a non-linearity g (activation function)

● Often are grouped in layers, where each unit is connected to all units
from the previous layer

Perceptron
● Binary valued function of its

inputs proposed in the 1950’s

● The discontinuous Heaviside function makes it hard to train by gradient
descent methods

● Sigmoid activation is a smooth approximation of Heaviside

Activation Functions
● ReLU: the most frequently

used the activation today

● Easy to differentiate

● Enable better training
of deeper networks

Feedforward Neural Network architecture
● Feedforward networks are often organized in “layers”
● The architecture can be specified by an acyclic graph of layers e.g.

● In image processing and computer vision applications the input vector
has shape H x W x C (height, width, channel)

● ConvNets interpret a layer of neurons as a volume with dimensions
(H,W,Depth), which preserves the spatial structure of the image

Network layers
● A layer is a map

● It is customary to define a layer of neurons as the affine transformation

together with the activation function. However, it is often convenient to
split the activation function in an independent layer

● Some common “layers”:
● Activation: applies the same nonlinear function g to all its inputs
● Fully connected
● Convolutional
● Transposed convolution
● Pooling
● Batch Normalization (later)

Layers: fully connected (FC)
● Compute an affine transformation of its input (in matrix notation)

● All possible connections between layer
neurons each connection with its own weight

● Contains c (d + 1) parameters

An FC layer with
its nonlinearity

Layers: convolution (Conv)
● A particular case of FC layer

● Each output map is result of convolving the input with a kernel wl
● Conv layers involve many more connections than unique weights

i.e. many connections share the same weight
● Conv layers are translation equivariant

Let’s count some parameters
How many parameters are there in this Conv2D layer?

y = W x + b

K = 5x5
In = 96
Out = 256

Params: 96 x 5x5 x 256 + 256

About convolutional networks (ConvNets)

Convnets are inspired by the organization of the animal visual cortex.
Individual cortical neurons respond to stimuli only in a restricted region of
the visual field known as the receptive field.
Different neurons respond similarly when presented to the same
stimulus, which implies that translations do not affect the analysis.
The receptive fields of different neurons partially overlap such that they cover
the entire visual field. This particular kind of neural network assumes that we
wish to learn filters, in a data-driven fashion, as a means to extract features
describing the inputs.

Layers: transposed convolution

● “Splats” the kernel on the output layer (similar to aggregation)
○ Equivalent to a convolution with the rotated kernel if stride=1

● It is the transpose of the convolution matrix

Transposed ConvConv

Layer: Pooling (POOL)

● Spatial subsampling by binning of the input features
● Max Pooling is the most common but average pooling also feasible
● Provides more translation invariance in the feature maps
● The current trend is to use strided convolution instead of pooling

Notes on the ConvNet architectures
● ConvNet architectures vary depending

on the application: Encoders, Hourglass
Fully convolutional, ...

● Depth (hence deep) is a common trait

● Diagrams tend to omit many details

This is the shape of
the output of the layer

The hierarchical layer structure allows to learn
hierarchical filters (features)

Representation Power of NNs
Universal Approximation theorems

● NN with one hidden layer (arbitrar width) can represent [Cybenko 1989]
○ Any bounded continuous function (to arbitrary error)
○ Any Boolean function exactly

● Arbitrary depth [Zhou Lu et al. in 2017]

\

● ...

Approximation power of deep architectures
Why deep architectures?
● The universal approximation theorem states that a network with one

hidden layer can represent any function
○ But the number of neurons required may be unfeasibly large

● Using deeper models can exponentially reduce the number of units
required to represent the desired function

○ An intuitive geometric explanation of this, using the absolute value nonlinearity, is:

Figure: Montufar et al. On the Number of Linear Regions of Deep Neural Networks. 2014

● How do we find these models?
● Can we even find them?

https://playground.tensorflow.org/

 Training

Training

● Given a large number of sample input-output pairs (x,y) of the problem
● We’d like to optimize the parameters θ of the model to minimize the risk

(expected value of the loss)

● Since the density of data p(x,y) is unknown, empirical risk is used instead

● The challenge is that the learned model generalizes well to unseen data
○ Attention! The distribution of the training data must be representative of the real density

else we have what is called dataset bias.
○ And the training dataset must be large enough

Training
Supervised learning checklist:

● Labeled training data: many pairs of noisy and noiseless images

● A model: the parametric function

● A loss function: defines the goal of the algorithm, usually a norm
between output and label

● An optimizer: that updates the model parameters so as to minimize
the empirical loss computed on the training data

Overfitting and validation
● The objective of training is to fit the parameters of the model to minimize the empirical risk

while being able to generalize to unobserved data

● The problem would be to train a model that overfits to the training set

● The capacity of the model (ability to learn/overfit) is controlled by: function space (i.e.
polynomials of degree n), regularization, and number of parameters

Image from the online demo by Andrej Karpathy:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Overfitting and validation
● Defining and estimating the capacity of a NN is still an active research

topic. But we can detect the symptoms of overfitting.
● The dataset is split in training, validation, and test sets

○ Test is used to evaluate the final network. Should only be used once for the final
assessment of the performance of the model.

○ Validation is used to monitor the generalization performance during training, allowing to
spot overfitting, and tune hyperparameters

○ When train and validation errors diverge too much it is probably due to overfitting

Optimization
● Stochastic gradient descent is simple

○ Approximates the gradient of the risk with a small set of training samples (mini-batch)
○ Computes the gradient of the mini-batch risk wrt all the parameters and updates them
○ Learning rate τ: controls the step size. It is a very delicate hyperparameter

● In practice use adaptive gradient
methods with momentum

○ We will use ADAM (Adaptive Moment
Optimization) [Kingma, Ba 2014]

● Second order methods also exist ...
Image credit: Alec Radford

Computational graphs
● Networks and losses are coded using computational graphs

○ This is done by coding using specific packages such as torch, tensorflow or jax …

● Since all operations are traced in the graph they enable automatic
differentiation and thus the computation of the gradients needed for SGD

Computation of the derivatives using the chain rule
● Compute the differential of a composite function

● Chain rule says where all terms are Jacobian matrices

● For scalar functions that is

● Let’s compose f with k.

See any pattern?

f

Backpropagation by example

Backpropagation by example

Forward pass

Note that these are actual
numbers not symbols

Backpropagation by example

Forward pass

Backpropagation by example

Forward pass

Backpropagation by example

Backpropagation pass

Backpropagation by example

Backpropagation pass

Backpropagation by example

Backpropagation example

The problem with Backpropagation is that it is a leaky abstraction.
… it’s easy to believe that you can simply stack arbitrary layers together and
backprop will “magically make them work” on your data.

In deep networks the gradient vanishes during backprop

Vanishing gradients

If one of these terms becomes too small
then the gradient wrt w2 will vanish

Vanishing gradients
When using sigmoid or tanh nonlinearities

z = 1/(1 + np.exp(-np.dot(W, x))) # forward pass sigmoid

dx = np.dot(W.T, z*(1-z)) # backward pass: local gradient for x
dW = np.outer(z*(1-z), x) # backward pass: local gradient for W

● If weights W are initialized too large the output z also becomes large,
which nulls all the gradients on the rest of the backward pass

● The sigmoid local gradient (z*(1-z)) achieves a maximum at 0.25,
so stacking many sigmoids leads to a gradient that vanishes with depth

Dying ReLUs
If a ReLU neuron initialized such that it never fires then it will never change

z = np.maximum(0, np.dot(W, x)) # forward pass
dW = np.outer(z > 0, x) # backward pass: local gradient for W

Weight initialization
● Initialize weights so that outputs of the affine layers are close to 0,

where the nonlinearity of the activation function takes place
○ Typically initialized following a Gaussian distribution of a small standard deviation

● Note that the distribution of the outputs from a randomly initialized neuron
has a variance that grows with the number of inputs

○ This is a problem for deep networks
○ To ensure that the variance of the output is the same as the input the

standard deviation of the initial weights could be set to
○ A refined analysis of the effect of the ReLU activation leads to std.

● Initialization has become less critical with the introduction of BatchNorm

Easing the learning

Batch normalization (BN)
Controls the mean and variance of the distribution of inputs to an activation function

● During the training of a deep network the distribution of inputs to a neuron can drift away from
the nonlinearity (this is the “internal covariance shift”)

● BN centers these values on the relevant zone of the activation function
● It allows to train deeper network and alleviates the vanishing gradient

Skip connections / residual learning
● Skip connections aim at facilitating the training of deeper networks by

attenuating vanishing gradient

● Residual learning amounts to creating a skip connection from the input to
the output of the network i.e. F(x) = x + Net(x)

○ The intuition is that if the mapping F(x) is close to the identity, then it is easier to learn the
residual mapping Net(x)

Regularization
Aims at improving generalization (prevent overfitting) by indirectly controlling
the capacity of the model

● L2 or weight decay
○ Adds a term + λ ||W||2 to the empirical risk function

Its gradient is -W which reduces the weights towards 0 at each iteration

● L1 regularization
○ Adds a term + λ ||W||1 to the empirical risk function

Its minimization enforces sparsity of the weights

● Dropout
○ Randomly removes neurons during a batch update
○ The aim is to enforce that all neurons are used

How NNs even work?

Deep thoughts about deep networks
● We have seen that deep neural networks can represent any function

(representation theorem)
○ But the optimal network configuration may be very hard to find with a SGD algorithm

● However, a SGD training is more likely to find a “good minimum” in a
bigger network (many good minima)

Histograms of loss values for 1000 trainings with SGD varying
the number of hidden units in a network with a single hidden
layer. [Choromanska et.al 2015]

The bias-variance tradeoff
● ML tries to approximate an ideal target function f with a model
● Hypothesis set H: set of all possible models we consider, e.g.

○ How good is my hypothesis to approximate the target?
○ Is it hard to find a solution in the set that approximates my target function?

The bias-variance tradeoff
● Suppose that the ideal model f explains the data:

the noise eps has variance
● We want to find a function of the training data D that

approximates f as well as possible (in the MSE sense)

● The expected error on an unseen sample can be decomposed as

 with

Bias-variance tradeoff and NNs

● NNs have millions of parameter but they generalize extremely well!
● Observes a “double descent” phenomenon, i.e. test risk re-descends for

over-parametrized models

● No good explanation …

2018

Overparameterization is good

“you want to make sure you hit the zero training error. Because if you don't, you
somehow waste the capacity of the model.”

2021

Overparameterization is good

2023

High dimensional representation

The Lottery Ticket Hypothesis [Frankle & Carbing 2019]

● The pruned sub-network
attains at least the same
accuracy as the original

● Attains it in at most the
same iterations

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, [Frankle & Carbing ICLR2019]

Classification with CNNs

A classification network

Many architectures, different properties

A classification network
VGG [Simonyan, Zisserman. 2014, Very deep convolutional networks for large-scale image recognition.]

● Encoder type architecture
● Final layers produce a vector of probabilities by applying softmax

Conv and pool layers FC layers

A classification network
VGG [Simonyan, Zisserman. 2014, Very deep convolutional networks for large-scale image recognition.]

● Encoder type architecture
● Final layers produce a vector of probabilities by applying softmax

Conv and pool layers FC layers

Classification Loss: Cross-Entropy Loss
The optimizer will minimize the loss over all the training examples

The cross-entropy loss is defined as

it amounts to maximizing the predicted probability for the correct class

Still imperfect solution: adversarial attacks

Summary

● NNs are powerful end-to-end trainable functions

● Allow to solve complex problems better than hand made programs

● Only require data to be trained
○ Also depend on the choice of model, design of loss, and optimization algorithm

● Still many open questions

Homework single-Gaussian Splatting
Le problème consiste à trouver les paramètres d’une gaussienne a, \mu et \Sigma
de sorte à bien approximer le contenu d’une image monochrome I(x). On fait ca
par minimisation de la fonction g.

● L’objectif est de décrire le graph de calcul la minimisation de g.
● Calculer par backprop le gradient des parametres a, \mu et \Sigma.
● Puis implémenter l’optimisation sans autodiff de pytorch, et avec autodiff pour

obtenir a, \mu et \Sigma.
● Bonus: Comment se comporte si on remplace on \sigma_i par

exp(signa_i^{-2})?

I(x) est une image
monochrome qu’on fournit

Exemple de Gaussian Splatting
https://poly.cam/capture/52b1e099-c2cc-4eca-a0ae-e17aabece1ff

Must have NN ingredients

● ConvNets
● ReLU
● BatchNorm
● Skip connections
● Deeper networks

Rules
● ReLU
● Residual learning
● Batch normalization
● Exploit image redundancies
● Multiscale?

UNet = Multigrid

