18! Neural Networks
| and image
classification

IA&ML Module 4
Image and Video Processing

Gabriele Facciolo

Lecture 1 - 7-10-2021

Presentation of the course

The objective of this course is to present a panorama of the main modeling
aspects and practical insights of neuronal networks (NN) for computer vision
applications.

Page: nhttps://gfacciol.github.io/M1_IAML_imagel

Lessons:

1. -- Thursday 7/10 (2E34): 14h00-16h30 - Intro NN, backprop and CNN for classification
2. -- Thursday 21/10 (2E34): 13h30-16h00 - Semantic segmentation
3. -- Thursday 18/11 (2E34): 14h00-16h00 - Object detection

4. -- Thursday 25/11 (1B14): 13h30-16h00 - Transfer learning and representation learning

https://gfacciol.github.io/M1_IAML_image/

Validation (must choose now)

Project / Bibliographical study of a subject of your interest

Think a subject

Check with me if it is feasible (must include some coding)
Do it!

Write a report + presentation

BN~

Or, 2 mini projects (proposed by me) with code, experiments and report

Plan

The image classification problem

Feedforward neural networks

o Perceptron

o Deep multilayer networks

o Types of layers

o The power of deep architectures
Training

o Data

o Loss and optimization

o Backpropagation

o Weight initialization and evolution
Easing the learning

o Batch Normalization

o Regularization

o Skip connections / Residual learning

Image
classification

Isithis}a pigeon?

Image classification

ui=tput 1mage

(mage
classifrer

c;=black caf

Grahford, Hidden Cat

e Image classification is the prototypical computer vision problem
e A nontrivial problem:

U; © RAEWRY ceg

e Difficult to craft a program to solve it in an unrestricted setting

Image classification is hard

Changes in illumination

Image classification is hard

Pose and shape changes

Image classification is hard

Intra-class variability

Bombay

Ragdoll

Eng. Setter

[_‘ Great Pyrenees RO German Shorthaired

'

.
2

Chihuahua

Parkhi et al. "Cats and dogs." 2012.

Image classification is hard

Occlusions

Data driven approaches

airplane

woneote B E DSBS

bird
cat
deer
dog

frog

1. Assemble a dataset of labeled images

2. Train a classifier using the labeled examples

3. Evaluate the classifier on new images

=S~ - B -

Eml B ¥ e
FEOHSERE - P
L B ERTLE
S S oY e [SIAb
LEESRDSAEE

A. Krizhevsky, V. Nair, and G. Hinton "CIFAR-10"

B oe ocvoSgnalEeaNeSGR e i k. ' ByEwTa<l vEHooBEom
SEMIRES® S *RSLIEM -0 | ~ e m_nu e ant™
-mo-\'\ on-o-m B0 o%-/- v OROEFO=0E2
% 3]e . ‘ { G I—!-l-l_-
-_--lnmnnmn_--a—lum S LIRSS i
SalPELAE @A e =M @ 0 &A sVl oe i Foa D IR N 8 m
d--I-ll-no RO e o [0 IS S S] v IGER 4
Bop sHe T gl e GEEOBEEADH+ T = ¢ « e - 0~ W0 E e

ImageNet Large Scale Visual Recognition Challenges

~ v SN TFHOB EmesE B l-nvl-l D “IRETE - TW
L E1-8]* - Fl BSSn e P4 kL e i | e e oa19
o | =/ oL EENE B -.--»m e e

---:-du cHmTRDiwlad il B TNeyvsm® s nEBS wRN
ANYowEEN -GS O — AW — S FIEACEEEML Dl § e
- ¥ lan- CAME. N D N T e e e Y SRR O
SCcEER I -Ewse > st~--r-lnn-'a—-lninm-lm

e ey T}
i zgBle-~1-FEES A= tﬂ'-ll VEEA & DN--sas)
O. Russakovsky, et al. TmageNet Large Scale Visual Recognition Challenge”

Classic approaches

e First extract features (SIFT, HOG...), then feed them to a classifier

e Allows to reduce the dimension of the classifier
e Features are invariant (to rotation, translation, scale, and illumination

changes) and allow to robustly classify

Feature Classifrer

Extraction (2.9., SVM) /\
SIFT,
Hog,

= ¢;=black caf

Grahford, Hidden Cat

SIFT in a nutshell

; R VR

Ve EALRY H [[3K #,
~ e

SHE NN ING N | I P X % ¥

e [T - I

na S |3k 3 3%
- | & 1 —

SN BRI

gradients d'image descripteur de point-clé

3. Keypoint matches 2. Keypoint descriptors

Edge-based features are physiologically plausible

62: visual cortex neurons

have a restricted receptive field. These

Hubel & Wiesel °

primary :

visual cortex

n
(-
i)
e
©
e
C
Q0
—
o
O
y e
&)
o
o
7))
O
'}
o
=
=
7))
C
)
7))
(O]
-
©
i)
©
&)

»
—
)

=

4=
| -
(©
)
=
O

—

=

O

Q0

U—
()

=

e
o
)
&)
()
—
)
e
e
k=

visual field

Jones & Palmer ‘87 concluded

2D Receptive Field

that Gabor filters fit well these

activations

AN

/)

Z

2D Gabor Function

~
N

o &
I

7/

=

~
N

Z

" Difference

SEZZIN S

Gabor filters decompose images in useful features

theta=45, theta=45, theta=0, theta=0,
frequency=0.40 frequency=0.10 frequency=040 frequency=0.10

Gabor filters decompose images in useful features

Original Image Filter (real) Filter Response Di

Classic computer vision approaches

e First extract features (SIFT, HOG...
e Allows to reduce the dimension of the classifier

), then feed them to a classifier

e Features are invariant (to rotation, translation, scale, and illumination

changes) and allow to robustly classify

Input Image

Cell

8x8 pix
Cell Histogram

H

Gradient Vector

Current cell with the 4
normalization blocks

Coll Hlstogum
(9 bins)

Gradient

Calculation

ion

| -

fip
i

Histogram

16 cells

Block Block Block Block
1 i 3 4

HOG feature
(36 values)

Histogram

INormaliutlon

8 cells
Collect HOG features
TDete over detection window
Window (4608 values)
Building Linear SVM
Wi Classification
Descriptor

Detection

Suleiman, A, Sze, V. "Energy-efficient HOG-based object detection at 1080HD 60 fps with multi-scale support.” SiPS, 2014.

Deep learning approach

Learn the features at the same time as the classifier

Features and classifier are coded in the layers of a DNN

The network is usually trained in an end-to-end way

Grahford, Hidden Cat

Trainable

Feature
Transform

Trainable
Feature
Transform

Trainable
Feature
Transform

Trainable
Classifier

Deep Learning
End-to-End Traiming

c;=black caf

Classification vs Regression

154 « Dlsscs 200 i
e Healthy o o n
161° % 5| 1001
~ o2 ﬁ“: . §
% 5 b K . 5 01
. . ° :°' g
e C(Classification 0 s 1907
o Outputs a discrete label & 200
o Finds decision boundary 0 5 0 s = N
e Regression Regression
o Outputs continuous variable Q What is the temperature going to
: . 5
o Finds a function Jry 2 lomartows
84°
Classification
Will it be Cold or Hot tomorrow?
coLp @
Fahrenheit

F 50 40 30 20 0 O 10 2 I 40 5 60 N B0 90 100 110 120 10 WO 150 160 170 180 150 X0 210 20 20

Neural networks

Feedforward Neural

—o.
axon from a neuron

Networks

synapse
WoTo

g o e
dendrites V of axon . %\;'fé .
02 : Sez:le
axon
A) 0 terminais !Dul layer
(f\\ impuises caried input layer
cell body e b hidden layer 1 hidden layer 2

e Neural networks are vaguely inspired on biological neurons
e A neuron/unit is modeled as a composition of an affine transformation
of its inputs x: w x + b and a non-linearity g (activation function)

f(x) = g(w-z+0b)

e Often are grouped in layers, where each unit is connected to all units
from the previous layer

y = g3(bs + W3- ga(by + W5 - g1(by + W7 - x)))

Perceptron

o wo

—-o'
axon from a neuron

synapse
WoZg

e Binary valued function of its
inputs proposed in the 1950’s

output axon

activation
function

1 fw-2+b>0,
0 otherwse,

fa)={

e The discontinuous Heaviside function makes it hard to train by gradient
descent methods
e Sigmoid activation is a smooth approximation of Heaviside

SIGMOID

1 10
I

0.5

0.0 —-‘/I l: 1 1
4 = 2

ACtivati O n F u n Cti O n S Activation function Equation Example 1D Graph

Unit step 0, 7<0, Perceptron
(Heaviside) d(2) = {0.5, z=0, variant B E—
1, z>0,
e ReLU: the most frequently
]) Sign (Signum) L 20 Perceptron e
used the activation today b = {0, 2= 10, variant —
1, z>0, —
Linear Adaline, linear I
g (Z) = INax (O Z) Pz) =1z regression 74
,
Piece-wise linear 1, z> 1, Support vector _—
E ﬁ . p=4z+L -Ll<z<1l machine —_—
e Easy to differentiate AL
5 s —73,
Logistic (sigmoid Logistic \
. ° e ! o) = . regression, A
e Enable better training T+e= Multlayer NN
of deeper networks _ _
Hyperbolic tangent -t Multi-layer
$(2) = et + o2 Neural
Networks
Rectifier, ReLU Multi-layer
(Rectified Linear d(z) = max(0, z) Neural
Unit) Networks
Rectifier, softplus Multi-layer
#(z) = In(1 + €?) Neural
Copyright © Sebastian Raschka 2016 NetWOka

(http://sebastianraschka.com)

Feedforward Neural Network architecture

e Feedforward networks are often organized in “layers”
The architecture can be specified by an acyclic graph of layers e.g.

F(x) = falfa-1(...(f2(f1(2))...))

e Inimage processing and computer vision applications the input vector
has shape H x W x C (height, width, channel)

e ConvNets interpret a layer of neurons as a volume with dimensions
(H,W,Depth) , which preserves the spatial structure of the image

input layer
hidden layer 1 hidden layer 2

Network layers

Alayerisamap f; : A; — B; with B; = A;14

It is customary to define a layer of neurons as the affine transformation
together with the activation function. However, it is often convenient to
split the activation function in an independent layer

Some common “layers”:

Activation: applies the same nonlinear function g to all its inputs
Fully connected

Convolutional

Transposed convolution

Pooling

Batch Normalization (later)

Layers: fully connected (FC)

e Compute an affine transformation of its input (in matrix notation)

flx)=Wx+Db
W e R phe Rz eR?
_ _ An FC layer with
e All possible connections between layer its nonlinearity

neurons each connection with its own weight ’ /
e Contains c¢(d+1) parameters

\""// ‘ output layer

hidden layer 1 hidden layer 2

4
®

2\

N N

N
®
0
(U

X

input layer

a b 0 0 0
Layers: convolution (Conv) co
0 0 ¢ a b
e A particular case of FC layer 00 0 ¢ a
y(i,5,0) =bi+ > x(i+s,j+tkwl(s tk)
(s,t,k)esupp(w;)
e Each output map is result of convolving the input with a kernel w,
e Conv layers involve many more connections than unique weights
i.e. many connections share the same weight
e Conv layers are translation equivariant

activation map

32x32x3 image

/ ' 5x5x3 filter
32

convolve over all

spatial locations
/32

fi=6o004

wi

T
T2
T3
T4
5

Let’'s count some parameters

How many parameters are there in this Conv2D layer?

y=Wx+Db

55

K= 5x5

: Sl \.l —— T
In =96 AN I

Out = 256 5

Params: 96 x 5x5 x 256 + 256

About convolutional networks (ConvNets)

Convnets are inspired by the organization of the animal visual cortex.
Individual cortical neurons respond to stimuli only in a restricted region of
the visual field known as the receptive field.

Different neurons respond similarly when presented to the same
stimulus, which implies that translations do not affect the analysis.

The receptive fields of different neurons partially overlap such that they cover
the entire visual field. This particular kind of neural network assumes that we
wish to learn filters, in a data-driven fashion, as a means to extract features
describing the inputs.

Layers: transposed convolution

Conv Transposed Conv

e “Splats” the kernel on the output layer (similar to aggregation)
o Equivalent to a convolution with the rotated kernel if stride=1

e |Itis the transpose of the convolution matrix

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
Txd=Xa i+xTd=X"d
0 0 axr
a y 0 ay
z y z 0 0 O |b| ay + bz z x| |a| _ |az+bx
0 0 2z y z 0f|c| |bz+cy+dz 0 yi bl by
d 0 =z bz
0 0 0 0

Example: 1D conv, kernel

sizoa3, gliiden?, pacdings1 When stride>1, convolution transpose is

no longer a normal convolution!

Layer: Pooling (POOL)

Spatial subsampling by binning of the input features

Max Pooling is the most common but average pooling also feasible
Provides more translation invariance in the feature maps

The current trend is to use strided convolution instead of pool

Single depth slice
111|124

5(6|7]|8
32010] 3|4
2 4

max pool with 2x2 filters
and stride 2 6 8

Notes on the ConvNet architectures

ConvNet architectures vary depending NASWLERY ‘ et ez s

on the application: Encoders, Hourglass l_ Woe St T b «Hﬂ-ﬂ
Fully convolutional, ... e e
. Conv 1 Conv 2 Conv lconv4 Convs
Input

Image

Depth (hence deep) is a common trait This is the shape of
the output of the layer

224x224x3 224x224x64

Diagrams often omit nonlinearities

112 x[112x 128

56[x 56 x 256
128 64 64 2 28 % 28 x 512 TXTx512
5
& AMXAxB12 |) 4006 1x1x1000
: e =
inpu y
output M
mage w|w 5 >
tile ol < ;eag;ne
8 E g § X @ ((((((((((tution+ReLU
1 1 max pooling
Wisviza I fully connected+ReLU
.|.| T:iil () softmax
o .))
TR si2 26 t Noisy Image Residual Image
g ':I?I q]’:ltl = conv 3x3, ReLU
R T owemow ' 3 3 2
....- — m § max pool 2x2 3 - =] 2 o i
1024 45 3 4 up-conv 2x2 2 =5 & + =
- :e_; a = conv 1x1 + 2 |5 = = S
] L @ @ X S
= + + +
o
S g £ £
S S S
o o (s)

The hierarchical layer structure allows to learn
hierarchical filters (features)

Low-Level| |Mid-Level| |High-Level| | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Slide credit: Yann LeCun

Representation Power of NNs

Universal Approximation theorems

e NN with one hidden layer (arbitrar width) can represent [Cybenko 1989]
o Any bounded continuous function (to arbitrary error)
o Any Boolean function exactly

e Arbitrary depth [Zhou Lu et al. in 2017]

Universal approximation theorem (L1 distance, ReLU activation, arbitrary depth). For any
Lebesgue-integrable function f : R" — R and any € > 0, there exists a fully-connected ReLU
network A4 with width d,,, < n + 4, such that the function F' 4 represented by this network satisfies

[1) - Fa@)lde <

Approximation power of deep architectures

Why deep architectures?
e The universal approximation theorem states that a network with one

hidden layer can represent any function
o But the number of neurons required may be unfeasibly large

e Using deeper models can exponentially reduce the number of units

required to represent the desired function
o An intuitive geometric explanation of this, using the absolute value nonlinearity, is:

a N

e How do we find these models?
e Can we even find them?

/

N .

Figure: Montufar et al. On the Number of Linear Regions of Deep Neural Networks. 2014

Reload this page

Tinker With a Neural Network Right Here in Your Browser.

N

DATA

Which dataset
do you want to
use?

#

Ratio of training
to test

data: 50%
—e

Noise: 0O

Batch size: 10
—_—

Don't Worry, You Can't Break It. We Promise.

Epoch

000,000

FEATURES

Which
properties do
you want to
feed in?

-

,,,,,,,

Learning rate Activation Regularization Regularization rate
0.03 v Tanh v None v 0 v
4+ — 2 HIDDEN LAYERS OUTPUT

Test loss 0.504
Training loss 0.512

4 neurons 2 neurons
4 4
(]
1 (‘.o» %%
— o o8 '.ga 8 L0
oo .».'1,"."9 0
SR,
4 The outputs are S0 Bee ;:' et ere
° [) ®
mixed with varying LN 3‘5.. Ko
- = » & °
weights, shown <
b by the thickness O
of the lines.

This is the output

from one neuron. |
Hover to see it 0
laraer.

Problem type

Classification ~

https://playground.tensorflow.org/

O)
=
=

©

i
T

Training

e Given a large number of sample input-output pairs (x,y) of the problem
e We'd like to optimize the parameters 6 of the model to minimize the risk
(expected value of the loss)

R(Fy) = / 2), Wl) dedy

e Since the density of data p(x,y) is unknown, empirical risk is used instead

RP(Fg) Zf (Fo(zi), i)

e The challenge is that the learned model generalizes well to unseen data
o Attention! The distribution of the training data must be representative of the real density
else we have what is called dataset bias.
o And the training dataset must be large enough

Training
Supervised learning checklist:

e Labeled training data: many pairs of noisy and noiseless images
e A model: the parametric function Fy

e A loss function: defines the goal of the algorithm, usually a L2 or L1
norm between output and label

e An optimizer: updates the model parameters so as to minimize the
empirical loss computed on the training data

Overfitting and validation

e The objective of training is to fit the parameters of the model to minimize the empirical risk

Ntrain

Et'razn - Z -FO x'L

while being able to generallze to unobserved data FEics; = Z U(Fo(xi),v:)
i=1

e The problem would be to train a model that overfits to the training set

3 hidden neurons 6 hidden neurons 20 hidden neurons

Image from the online demo by Andrej Karpathy:
http://cs.stanford.edu/people/karpathy/convnetis/demo/classify2d.html

e The capacity of the model (ability to learn/overfit) is controlled by: function space (i.e.
polynomials of degree n), regularization, and number of parameters

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Overfitting and validation

e Defining and estimating the capacity of a NN is still an active research
topic. But we can detect the symptoms of overfitting.

e The dataset is split in training, validation, and test sets
o Testis used to evaluate the final network. Should only be used once for the final
assessment of the performance of the model.
o Validation is used to monitor the generalization performance during training, allowing to
spot overfitting, and tune hyperparameters
o When train and validation errors diverge too much it is probably due to overfitting

== TRAINING ERROR
= TESTING ERROR
UNDERFITTING OVERFITTING

BEST CAPACITY

.: / e L —
\;4 X=—GENERALIZATION
:] Temp

X

ERROR

CAPACITY

Optimization

e Stochastic gradient descent is simple
o Approximates the gradient of the risk with a small set of training samples (mini-batch)
o Computes the gradient of the mini-batch risk wrt all the parameters and updates them
o Learning rate z: controls the step size. It is a very delicate hyperparameter

Algorithm 24: Stochastic gradient descent.

1 while stopping criterion not met do

2 Sample mini-batch of m samples 1, xo, ..., x,, and corresponding targets v;;
3 Compute gradient estimate: A «— =V > 0(Fy(z:), y:)

4 Update the parameters: 0 «— 6 — 7 - Af

7 ‘ N — se0 e

= Momentum [
— NAG E
- Adagrad S
Adadelta

e In practice use adaptive gradient

methods with momentum
o We will use ADAM (Adaptive Moment
Optimization) [Kingma, Ba 2014]

e Second order methods also exist ...

Image credlt Alec Radford

Computation of the derivatives using the chain rule

e Compute the differential of a composite function f(:IZ) — h(g(x))

of _

Oh Og

e Chain rule says — — —— —— where all terms are Jacobian matrices
dg Ox
. - of /
e For scalar functions that is 8— — h (g(aj))g (g;)
X
e Let's compose fwith «. e(r) = k(f(x))
e(x) = k(h(g(z)))
See any pattern? He
5 = K (h(g(2))) ' (g(2))g ()

Backpropagation by example =z = |Wz+b|?

- <bl>\
(55 %)

N

2 = ||We + b
. ~(—>

Backpropagation by example =z = |Wz+b|?

po(mom ey U ~(—

y:Wa::< lezxz)
—1 W;4-3T;4

oy _ [T1 T2 T3 0 O
oW 0 0 0 1 X2 X3
o _ W
x ﬁ Note that these are actual

numbers not symbols

Forward pass

Backpropagation by example =z = |Wz+b|?

tio

Forward pass

Backpropagation by example =z = |Wz+b|?

Forward pass

.“ 2=qi +

g_cz] — (26117 2QQ)

Backpropagation by example =z = |Wz+b|?

I
W = (w2 Ws) | 52 = (201, 2¢2) .

Backpropagation pass

Backpropagation by example =z = |Wz+b|?

bl>
= 1 0
Oz __ 0z 0q __ _
q ZZQ%‘*‘Q%
0z
9q

Backpropagation pass

Backpropagation by example

_ (b0
B b2 0z
I q ZZQ%‘*‘Q%
o(mom)y D

2= Wz + b|?

ro X3 0 0 0
0 0 1 X2 I3

Backpropagation example

X -2

Figure 10.10: Computational graph of f(x,y,z) = (z + y)z. The forward pass com-
putes values from inputs to output (shown in green). During the forward pass also
the local gradients of the gates are computed (shown in blue). The backward pass
then performs backpropagation which starts at the end and recursively applies the
chain rule to compute the gradients (shown in red) all the way to the inputs of the
circuit. The gradients can be thought of as flowing backwards through the graph.
Figure reproduced from http://cs231n.github.io/.

Yes you should understand
backprop

@ Andrej Karpathy Dec 19,2016 - 7 min read [1] [eee

The problem with Backpropagation is that it is a leaky abstraction.
... It’s easy to believe that you can simply stack arbitrary layers together and
backprop will “magically make them work” on your data.

Vanishing gradients

In deep networks the gradient vanishes during backprop

%) Oxs OF If one of these terms becomes too small
= then the gradient wrt w, will vanish

SIGMOID

Vanishing gradients

When using sigmoid or tanh nonlinearities

z = 1/(1 + np.exp(-np.dot (W, x))) # forward pass sigmoid

dx = np.dot (W.T, z*(1l-z)) # backward pass: local gradient for x
dWw = np.outer(z*(l-z), x) # backward pass: local gradient for W

e If weights W are initialized too large the output z also becomes large,
which nulls all the gradients on the rest of the backward pass

e The sigmoid local gradient (z*(7-z)) achieves a maximum at 0.25,
so stacking many sigmoids leads to a gradient that vanishes with depth

sigmoid function derivative of sigmoid

10} 10}

08} 0.8} sedaereieeaen :
derivative is zero at tails

0.6 | 06}

0.4 04 4
02} /"N 1
0.0 .

0.2}

0.0}
1

Dying RelLUs

If a ReLU neuron initialized such that it never fires then it will never change

z = np.maximum(0, np.dot (W, x)) # forward pass
dW = np.outer(z > 0, x) # backward pass: local gradient for W

RelLU function derivative of ReLU
0 : : ' ; 10| ' : :
81 . 4 0.8} q :
sl : ‘ | o6l derivative exadtly zero here
4l - . 0.4}
2| 1 0.2}
ol . 0.0 }

' A e e e A ' ' 1 1
-10 -5 0 5 10 -10 -5 0 5 10

Weight initialization

e |Initialize weights so that outputs of the affine layers are close to 0,

where the nonlinearity of the activation function takes place
o Typically initialized following a Gaussian distribution of a small standard deviation

e Note that the distribution of the outputs from a randomly initialized neuron
has a variance that grows with the number of inputs

Var(y) = Va’r(z wx;) = Z Var(w;x;) = Z Var(x;)Var(w;) = (nVar(w))Var(zx;)

o This is a problem for deep networks
o To ensure that the variance of the output is the same as the input the

standard deviation of the initial weights could be set to \/%
o Arefined analysis of the effect of the ReLU activation leads to std. \/nz

e [nitialization has become less critical with the introduction of BatchNorm

Easing the learning

Batch normalization (BN)

Controls the mean and variance of the distribution of inputs to an activation function
e During the training of a deep network the distribution of inputs to a neuron can drift away from
the nonlinearity (this is the “internal covariance shift”)
e BN centers these values on the relevant zone of the activation function
e |t allows to train deeper network and alleviates the vanishing gradient

Algorithm 2: BN layer. During inference only steps 3 and 4 are applied
where pp,0%,, and 3 are those computed during the training.

input : Output values h of affine neuron over mini-batch B = {z1, -+ , x5}

:I‘arget mean and variance parameters [3, 72.
output: h; = BN, z(h;)

1
1 B =37 z_:l h; // mini-batch mean
2 0% = i i(h - ,uB)2 // mini-batch variance
7 M =1 z
N h; —
3 h; = B

\/? // normalization
op t+ €

4 /Azz = ’Yili + B // scale and shift

Skip connections / residual learning

e Skip connections aim at facilitating the training of deeper networks by
attenuating vanishing gradient

e Residual learning amounts to creating a skip connection from the input to
the output of the network i.e. F(x) =x + Net(x)

Noisy Image Residual Image

= =)

- -

[[

< @<

+ + =
> 2 » 2 £

@ @ S

+ +

> >

c c

S S

o o

o The intuition is that if the mapping F(x) is close to the identity, then it is easier to learn the
residual mapping Net(x)

Regularization

Aims at improving generalization (prevent overfitting) by indirectly controlling
the capacity of the model

e L2 or weight decay
o Adds aterm + 1 ||W]|’ to the empirical risk function
Its gradient is - which reduces the weights towards O at each iteration

e L1 regularization
o Adds aterm + 7 [|[W]|, to the empirical risk function
Its minimization enforces sparsity of the weights

e Dropout
o Randomly removes neurons during a batch update
o The aim is to enforce that all neurons are used

How NNs even work?

Deep thoughts about deep networks

We have seen that deep neural networks can represent any function
(representation theorem)

(@)

But the optimal network configuration may be very hard to find with a SGD algorithm

b

However, a SGD training is more likely to find a “good minimum”
bigger network (many good minima)

(@)

Use regularization to avoid overfitting

nhidden
25
50

100
250
500

count

Histograms of loss values for 1000 trainings with SGD varying

the number of hidden units in a network with a single hidden
layer. [Choromanska et.al 2015]

loss

The bias-variance tradeoff

e ML tries to approximate an ideal target function f with a model

e Hypothesis set H: set of all possible models we consider, e.g. ¥ = f() +¢,
o How good is my hypothesis to approximate the target?
o lIs it hard to find a solution in the set that approximates my target function?

Bias-variance tradeoff

! —Bias
overfitting > —Variance
Total error |

& underfitting

Prediction error

Model complexity

The bias-variance tradeoff

e Suppose that the ideal model f explains the data: ¥ = f(w) T
the noise eps has variance ¢*

e We want to find a function f (z; D) of the training data D that
approximates f as well as possible (in the MSE sense) (y — f(a;; D))2

Simple Complex

e The expected error on an unseen sample can be decomposed as

Ep [(y— f(m;D))z] = (BiasD [f(ac,D)])2 + Varp [f(:v,D)] + o2

with Biasp [f (z; D)] = Ep [f (z; D)] - f(=)

Varp [f (; D)] = Ep[(Eplf (z; D)] — f (z; D))"].

Bias-variance tradeoff and NNs

Reconciling modern machine learning practice
and the bias-variance trade-off

Mikhail Belkin?®, Daniel Hsu®, Siyuan Ma?, and Soumik Mandal®

e NNs have millions of parameter but they generalize extremely well!
e Observes a “double descent” phenomenon, i.e. test risk re-descends for

over-parametrized models A , ,
under-parameterized /\ over-parameterized
Test risk
'f) “classical” “modern”
'Q'E regime interpolating regime
~ Training risk:

) S~ _ .A/interpolation threshold _
e No good explanation yet ... Capacity of H -

e One possibility may be related to the lottery ticket hypothesis as in
larger networks it is easier to find a winning lottery ticket

The Lottery Ticket Hypothesis [Frankle & Carbing 2019]

%O traInIng Pruning
O

e The pruned sub-network
attains at least the same . . .

accuracy as the original
. o Use the parameters after pruning

e Attains it in at most the

same iterations o Q—@ teinins
o o'\ O ‘
o O

Accuracy = 91%

Overview of Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, [Frankle & Carbing ICLR2019]

Classification with CNNs

Top-1 accuracy [%]

A classification network

Many architectures, different properties

Inception-v4
80 1 80 1 g : g
Inceptlon-v3‘ f ResNet-152
ResNet-SO‘ : ; VGG-16 @ VGG-19
751 B OB B B Tk S O (-1 |7 {0 1 R i it gt
ResNet-34
=
704 B B BB =70 ResNet-18
: | o®
© GooglLeNet
= ENet
65 1 S 65 1
'é © BN-NIN _
60 - F 601 5M 35M - 65M - 95M - 125M --155M
BN-AlexNet !
EEemss e B B B B B B B B A 55 AlexNet
P e T % O b ¢O .o% .l B o e 5 10 15 20 25 30 3;5 40
80\33'\- ,’\,,‘)0‘),\\.\1
‘x\e*v;\ €"\~\ \§\~\ \~\ Z\ *\e" & 6(; \\\e’es&e:“evs V\e‘,\&.’\o Q‘.'\o(\ Operations [G-Ops]
N K R REQReT e (A

A classification network

VGG [Simonyan, Zisserman. 2014, Very deep convolutional networks for large-scale image recognition.]

e Encoder type architecture
e Final layers produce a vector of probabilities by applying softmax

224 x 224 x3 224 x 224 x 64 P(Y =1 | X = x) =

ll23<112x 128

28 x 28 x 512 TXTx512
2
= 1 1x1x4096 1x1x1000
e | ' —

/7 14x14x5
TiE==x;

@ convolution+ReL.U
(1 max pooling
fully connected+Rel.U

@ softmax
/ W_J

Conv and pool layers FC layers

A classification network

VGG [Simonyan, Zisserman. 2014, Very deep convolutional networks for large-scale image recognition.]

e Encoder type architecture
e Final layers produce a vector of probabilities by applying softmax

eSi
e

224 x224x3 224 x 224 x 64 P(Y =] | X = x) —

112112 x 128

RElw RR w 2RA

v ,‘—.7\-’&—;“ —— T \'._..: g
| \ [\ {8 3
2ET (207)
A Joall

ﬁﬂ convolution+Kelt

1 max pooling

fully connected+ReLU

() softmax
/ W_J

Conv and pool layers FC layers

Classification Loss: Cross-Entropy Loss

The optimizer will minimize the loss over all the training examples

min > Z(NETe(x).).

(x;,y;)Eexamples

The cross-entropy loss is defined as

C
£(NETo(x)), y)) = =) Ty.ec. 108 puodet [yi € Cel

N——

c=1 NET,(x;)

it amounts to maximizing the predicted probability for the correct class

Still imperfect solution: adversarial attacks

correct +distort ostrich correct ‘ +distort ostrich

Take a correctly classified image (left image in both columns), and add a tiny distortion (middie) to fool the ConviNet with the
resulting image (right)

Intriguing properties of neural networks [Szegedy ICLR 2014]

Summary

e NNs are powerful end-to-end trainable functions
e Allow to solve complex problems better than hand made programs

e Only require data to be trained
o Also depend on the choice of model, design of loss, and optimization algorithm

e Still many open questions

