Automated 3D reconstruction from satellite images SIAM IS18 Minitutorial

Gabriele Facciolo, Carlo de Franchis, and Enric Meinhardt-Llopis
Centre de Mathématiques et de Leurs Applications (CMLA)
École Normale Supérieure Paris - Saclay
June 8, 2018

Overview

- This is a hands-on course on satellite image processing
- Objective: go from satellite images to a 3D model

- Plan and logistics

1. Basics of satellite images

- First on-line exercise with Jupyter at https://gfacciol.github.io/IS18/

2. Stereovision with satellite images

- Second on-line exercise with Jupyter Notebook

3. Triangulation and digital elevation model generation

- Third on-line exercise with Jupyter

4. 3D from collections of images

Speakers

Gabriele Facciolo

Carlo de Franchis

Enric Meinhardt-Llopis

Thank:

- Mila Nikolova, Fiorella Sgallari, and all the organizers
- Jean-Michel Morel and all our colleagues at ENS Paris-Saclay and Master2 MVA
- Katherine Scott for the inspiring "Python from Space" notebooks

Acknowledge:

Towards a daily cover of the Earth

Increasing resolution

- 2008: RapidEye, 5 satellites (5 m)
- 2008: GeoEye (0.4m)
- 2011: Pleiades, 2 satellites (0.7 m)
- 2013: SkySat, 5 satellites (1m)

- 2015: Sentinel-2, 2 satellites (10 m)
- 2017: Planet Labs Flock-1, 150μ-satellites (3-5m)

Port-au-Prince in 2012 (after the 2011 quake)

- 2018: Satellogic, 5μ-satellites (1m), ~300 planned

Need for automatic analysis

- Automatic event detection, ignoring radiometric changes
- Independence of acquisition geometry
- Use historical data

and in 2013

Towards a daily cover of the Earth

Increasing resolution

- 2008: RapidEye, 5 satellites (5 m)
- 2008: GeoEye (0.4m)
- 2011: Pleiades, 2 satellites (0.7 m)
- 2013: SkySat, 5 satellites (1m)
- 2015: Sentinel-2, 2 satellites (10 m)
- 2017: Planet Labs Flock-1, 150μ-satellites (3-5m)
- 2018: Satellogic, 5μ-satellites (1m), ~300 planned

Need for automatic analysis

- Automatic event detection, ignoring radiometric changes
- Independence of acquisition geometry
- Use historical data

Elevations in 2012 (after the 2011 quake)

Elevations in 2013

Towards a daily cover of the Earth

Increasing resolution

- 2008: RapidEye, 5 satellites (5 m)
- 2008: GeoEye (0.4m)
- 2011: Pleiades, 2 satellites (0.7 m)
- 2013: SkySat, 5 satellites (1m)
- 2015: Sentinel-2, 2 satellites (10 m)
- 2017: Planet Labs Flock-1, 150μ-satellites (3-5m)
- 2018: Satellogic, 5μ-satellites (1m), ~300 planned

Need for automatic analysis

- Automatic event detection, ignoring radiometric changes

Difference between the 2012 and 2013 elevations (Demolished, Built)

- Independence of acquisition geometry
- Use historical data

What a time to be alive!

Traditionally, newcomers to remote sensing should pay a high cost (in terms of knowledge) to work with satellite images.

- access to images
- file formats
- cartographic standards
- projection models
- specialized software
- etc...

A short Sentinel 2 time series
Today this is no longer true:

```
import tsd # timeseries downloader
aoi = {'coordinates': [[[2.306, 48.831], [2.306, 48.869],
    [2.376, 48.869], [2.376, 48.831]]], 'type': 'Polygon'}
tsd.get_sentinel2(aoi, out_dir='paris') # download data from ESA
```


Why 3D digital models?

They are an essential tool for:

- large-scale measurements:
- snow height on glaciers [Berthier et al. 2014]
- forests evolution [Gumbricht 2012]
- assessment after natural disasters [Yésou et al. 2015]
- change detection [Chaabouni-Chouayakh et al. 2010]
- cartography (orthorectification) [Leprince et al. 2007]
- more generally, image comparison

Bassies (Pyrénées), 2015-03-11
Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

Why 3D digital models?

They are an essential tool for:

- large-scale measurements:
- snow height on glaciers [Berthier et al. 2014]
- forests evolution [Gumbricht 2012]
- assessment after natural disasters [Yésou et al. 2015]
- change detection [Chaabouni-Chouayakh et al. 2010]
- cartography (orthorectification) [Leprince et al. 2007]
- more generally, image comparison

Bassies (Pyrénées), 2014-10-26
Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

3D models and orthorectification

Stereovision core idea: parallax is proportional to height

Images: AirbusDS Pleiades

3D reconstruction from image pairs

General principle:

- find corresponding pixels
- intersect the back-projected 3D lines

Need a camera model, and its parameters.

3D reconstruction from image pairs

Satellite Stereo Pipeline (S2P)

- Modular 3D stereo pipeline for satellite images
- Developed at ENS Paris-Saclay and CNES
- Open source: https://github.com/MISS3D/s2p
- Currently used by CNES in production

An automatic and modular stereo pipeline for pushbroom images,
C. de Franchis, E. Meinhardt-Llopis, J. Michel, J.-M. Morel, G. Facciolo. ISPRS Annals, 2014.

Section 1. Coordinate Systems and Geometric Modeling

Satellite images $==$ big data

Put a camera in space

- altitude: 400 to 700 km
- acquire very large images 40000×40000 pixels

footprint of an entire image

a small crop

Geographic and projected reference systems

Geographic: describe 3D points relative to a reference ellipsoid using latitude, longitude, and altitude

The reference ellipsoid:

Projected: transform the elliptical earth into a flat surface

- Mercator: preserves shapes but not size

- Universal Transverse Mercator: uses easting and northing

The Linear Pushbroom Camera

Similar to a pinhole camera, but:

- only one line of pixel sensors in the focal plane,
- the camera center moves at constant speed.

Internal parameters:

- focal length: f,
- position of the principal point: y_{0},
- size of the pixel sensors: w,
- dwell time: δ_{t}.

[Gupta and Hartley 1997] R. Gupta and R. Hartley. Linear pushbroom cameras. TPAMI, 1997.

Geometric relationship between image and space

- Given a complete set of parameters, and an image point \mathbf{x}, what is the back-projected ray?

Geometric relationship between image and space

- Given a complete set of parameters, and an image point \mathbf{x}, what is the back-projected ray?

Geometric relationship between image and space

- Given a complete set of parameters, and an image point \mathbf{x}, what is the back-projected ray?
- Where does it intersect the Earth surface?

Geometric relationship between image and space

- Given a complete set of parameters, and an image point \mathbf{x}, what is the back-projected ray?
- Where does it intersect the Earth surface?
- Express this line in a coordinate system which rotates with the Earth.

Geometric relationship between image and space

$$
\left[\begin{array}{ccc}
c_{\tau+\lambda_{0}} & -s_{\tau+\lambda_{0}} & 0 \\
s_{\tau+\lambda_{0}} & c_{\tau+\lambda_{0}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{i-\frac{\pi}{2}} & -s_{i-\frac{\pi}{2}} \\
0 & s_{i-\frac{\pi}{2}} & c_{i-\frac{\pi}{2}}
\end{array}\right]\left[\begin{array}{ccc}
c_{-\alpha_{t}-\frac{\pi}{2}} & 0 & s_{-\alpha_{t}-\frac{\pi}{2}} \\
0 & 1 & 0 \\
-s_{-\alpha_{t}-\frac{\pi}{2}} & 0 & c_{-\alpha_{t}-\frac{\pi}{2}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\varphi} & -s_{\varphi} \\
0 & s_{\varphi} & c_{\varphi}
\end{array}\right]\left[\begin{array}{ccc}
c_{\psi} & 0 & s_{\psi} \\
0 & 1 & 0 \\
-s_{\psi} & 0 & c_{\psi}
\end{array}\right]\left[\begin{array}{ccc}
c_{\omega} & -s_{\omega} & 0 \\
s_{\omega} & c_{\omega} & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
0 \\
w\left(y-y_{0}\right) \\
f
\end{array}\right)
$$

Image formation model

Localization function:

$$
\begin{aligned}
L: \mathbf{R}^{2} \times \mathbf{R} & \rightarrow[-\pi, \pi] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
(\mathbf{x}, h) & \mapsto(\lambda, \theta)
\end{aligned}
$$

The Rational Polynomial Camera Model

- A true camera model is difficult to implement
- For end-users, image vendors provide a very close approximation of the localization function L, given as a Rational Polynomial Functions with degree 3.
- Its inverse, with respect to \mathbf{x}, is given as well.

Localization of a point on a non-elliptical earth

Find the coordinates of an image point on the globe

Shuttle Radar Topography Mission (SRTM)

SRTM provides a near-global high-resolution digital topographic database of Earth

- Acquired in the year 2000
- Resolution 30 m

Section 2. Epipolar Rectification and Stereo Matching

Baseline 3D reconstruction algorithm

Baseline 3D reconstruction algorithm

Epipolar rectification: what is it?

Process of resampling the images in such a way that depth variations cause apparent motion in the horizontal direction only.

Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

Pinhole cameras

- $\mathbf{C}, \mathbf{C}^{\prime}$ and x define a plane, called the epipolar plane.
- Its intersection with the second image is the epipolar line of \mathbf{x}, denoted by epi ${ }^{\mathrm{x}}$.
- All the $\mathrm{x}^{\prime} \in$ epi $^{\mathrm{x}}$ share the same epipolar plane, hence the same
 epipolar line in the first image.

Conclusion: there is a one-to-one correspondence between epipolar lines.

Pushbroom cameras

- Satellite cameras are not pinhole, but pushbroom.
- As the camera center moves, the epipolar plane becomes a doubly ruled surface, namely a hyperbolic paraboloid.
- Epipolar lines become curves, still denoted by epi ${ }^{\mathrm{x}}$.
- All the $\mathrm{x}^{\prime} \in \mathrm{epi}^{\mathrm{x}}$ have a different epipolar surface, hence a different epipolar line in the first image.
Conclusion: there is no one-to-one correspondence between epipolar curves.

Epipolar rectification: why?

Why epipolar rectification:

- speed: reduces the exploration from 2D to 1D
- robustness: reduces the risks for false matches
- compatibility: allows to use standard stereo-matching algorithms

It is just an intermediate step. Then it could be done locally. What if you try to approximate locally the pushbroom camera model with a pinhole camera model?

RPC approximation

Let $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the RPC projection function. The first order Taylor approximation of P around point X_{0} is

$$
\begin{align*}
P(X) & =P\left(X_{0}\right)+\nabla P\left(X_{0}\right)\left(X-X_{0}\right) \\
& =\nabla P\left(X_{0}\right) X+T \tag{1}
\end{align*}
$$

with $T=P\left(X_{0}\right)-\nabla P\left(X_{0}\right) X_{0}$ and $\nabla P\left(X_{0}\right)$ the jacobian matrix.
This can be rewritten using homogeneous coordinates as

$$
P(X)=\underbrace{\left[\begin{array}{cc}
\nabla P\left(X_{0}\right) & T \tag{2}\\
0 & 1
\end{array}\right]}_{\text {matrix of size }(3,4)}\left[\begin{array}{c}
X \\
1
\end{array}\right]
$$

This is the projection function of an affine camera! [Hartley and Zisserman 2004]

Epipolar rectification: how?

In general:

1. Find keypoint matches $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$ with SIFT [Lowe 2004, Rey Otero 2014]
2. Estimate the fundamental matrix F [Hartley and Zisserman 2004] with RANSAC.

$$
\mathbf{x}_{i}^{\prime \top} \mathrm{Fx}_{i}=0
$$

Epipolar rectification: how?

What is the fundamental matrix?
The fundamental matrix is the algebraic representation of epipolar geometry. [Hartley and Zisserman 2004]
The fundamental matrix F of a pair of cameras is a 3×3 matrix of rank 2 such that any pair of corresponding points $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$ verify the equation

$$
\mathbf{x}_{i}^{\prime \top} \mathrm{F} \mathbf{x}_{i}=0 .
$$

The fundamental matrix song:
https://youtu.be/DgGV3182NTk

Epipolar rectification: how?

In general:

1. Find keypoint matches $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$ with SIFT [Lowe 2004, Rey Otero 2014]
2. Estimate the fundamental matrix F [Hartley and Zisserman 2004] with RANSAC.

$$
\mathbf{x}_{i}^{\prime \top} \mathbf{F x}_{i}=0
$$

Epipolar rectification: how?

In general:

1. Find keypoint matches $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$ with SIFT [Lowe 2004, Rey Otero 2014]
2. Estimate the fundamental matrix F [Hartley and Zisserman 2004] with RANSAC.

$$
\mathbf{x}_{i}^{\prime \top} \mathrm{F} \mathbf{x}_{i}=0
$$

3. Estimate resampling homographies H and H^{\prime} [Loop Zhang 1999]

$$
F=H^{\prime \top}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] H
$$

Epipolar rectification: how?

If you know the two camera matrices A and B :

1. Compute the fundamental matrix F [Hartley and Zisserman 2004]

$$
\mathrm{F}_{j i}=(-1)^{i+j} \operatorname{det}\left[\begin{array}{c}
\sim \mathbf{a}^{i} \tag{3}\\
\sim \mathbf{b}^{j}
\end{array}\right]
$$

where $\sim \mathbf{a}^{i}$ denotes the matrix obtained from A by omitting the row \mathbf{a}^{i}. This formula expresses directly each entry of F in terms of determinants computed from the entries of A and B.
2. Estimate resampling homographies H and H^{\prime} [Loop Zhang 1999]

$$
\mathrm{F}=\mathrm{H}^{\prime \top}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \mathrm{H}
$$

Epipolar rectification: how?

If the two cameras are affine, then:

- The fundamental matrix has a special form:

$$
\mathrm{F}=\left[\begin{array}{lll}
0 & 0 & a \tag{4}\\
0 & 0 & b \\
c & d & e
\end{array}\right]
$$

This expresses the fact that the epipolar lines are bundles of parallel lines.

- The rectification can be achieved with just a similarity (composition of rotation, zoom and translation).

Figure courtesy of Hartley and Zisserman, 2004

Epipolar rectification: how?

Two similarities that transform the epipolar lines in a set of matching horizontal lines can be computed directly from F.

$$
\mathrm{S}_{1}=\left[\begin{array}{c|c}
z \mathrm{R}_{1} & 0 \tag{5}\\
& t \\
\hline 0 & 0
\end{array} 1 . \quad \mathrm{S}_{2}=\left[\begin{array}{c|c}
\frac{1}{z} \mathrm{R}_{2} & 0 \\
\hline 0 & 0
\end{array}\right]\right.
$$

where $z=\sqrt{\frac{r}{s}}, t=\frac{e}{2 \sqrt{r s}}$ with $r=\sqrt{a^{2}+b^{2}}, s=\sqrt{c^{2}+d^{2}}$ and the two rotations R_{1} and R_{2} are given by

$$
\mathrm{R}_{1}=\frac{1}{\sqrt{a^{2}+b^{2}}}\left[\begin{array}{cc}
b & -a \tag{6}\\
a & b
\end{array}\right] \quad \mathrm{R}_{2}=\frac{1}{\sqrt{c^{2}+d^{2}}}\left[\begin{array}{cc}
-d & c \\
-c & -d
\end{array}\right]
$$

Epipolar rectification: conclusion

We have a blind way to rectify pushbroom images using a $1^{\text {st }}$ order Taylor approximation of their RPC camera model. How accurate is the approximation?

The are several ways to measure it:

1. Estimate the projection approximation error of a single camera:

- estimate $\max \|P(X)-A X\|$ for X varying in a neighborhood of X_{0}
- evaluate the $2^{\text {nd }}$ order term of the Taylor approximation

2. Estimate the rectification approximation error of two cameras:
2.1 compute the fundamental matrix F of their affine approximations
2.2 measure how well F fits the exact projections of some 3 D points

Epipolar rectification: results

To evaluate the method, measure the epipolar error:

$$
\max _{i \in\{1, \ldots, n\}} \max \left\{d\left(\mathbf{x}_{i}^{\prime}, \mathbf{F x}_{i}\right), d\left(\mathbf{x}_{i}, \mathbf{F}^{\top} \mathbf{x}_{i}^{\prime}\right)\right\},
$$

where $d\left(\mathbf{x}^{\prime}, \mathrm{F}^{\top} \mathbf{x}\right)$ is the vertical disparity:

$$
d\left(\mathbf{x}^{\prime}, \mathbf{F} \mathbf{x}\right)=\frac{\left|\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x}\right|}{\sqrt{\left(\mathrm{F}_{1}^{\top} \mathbf{x}\right)^{2}+\left(\mathrm{F}_{2}^{\top} \mathbf{x}\right)^{2}}}
$$

Epipolar rectification: results

Conclusion:

- After epipolar rectification, the maximal error w.r.t true camera model (RPC) is only 0.05 pixel!
- Working with small areas of interest (e.g. 500×500 meters) permits to do the
 usual epipolar rectification with enough accuracy for stereo matching.

Epipolar rectification: in practice

Epipolar rectification: in practice

rectified from the RPC's affine approximation

Epipolar rectification: in practice

rectified from the RPC's affine approximation

It's still moving vertically, isn't it?

The relative pointing error

Due to attitude measurement inaccuracies, the RPC functions may contain an error of a few pixels.

Given two corresponding points $\mathrm{x} \leftrightarrow \mathrm{x}^{\prime}$,
 the epipolar curve

$$
\operatorname{epi}_{u v}^{\mathrm{x}}: h \mapsto P_{v}\left(L_{u}(\mathbf{x}, h), h\right)
$$

may not pass through x^{\prime}.

The relative pointing error: why?

The camera parameters are measured on board. What's their accuracy?

- internals: carefully calibrated (in-flight commissioning)
- orbit parameters: cm accuracy with DORIS (GPS) intruments
- attitude coefficients: a few tens of $\mu \mathrm{rad} X$

$$
a \varepsilon \approx 700 \mathrm{~km} \times 50 \mu \mathrm{rad}=35 \mathrm{~m}
$$

[de Lussy et al. 2012] Pléiades HR in flight geometrical calibration: location and mapping of the focal plane

Effect of attitude errors

The effect of a yaw error is negligible with respect to the effect of an error on roll or pitch.

$$
a \varepsilon \gg \frac{D}{2} \varepsilon
$$

- a : flying altitude

- D: swath width

Thus the effect of attitude errors is mostly a constant image shift.

On small areas of interest

- epipolar curves are approximated by a bundle of parallel lines
- the effect of pointing error is approximated by a constant offset

Hence, given a set of keypoint matches (obtained with SIFT [Lowe 2004]), the error can be corrected with a vertical translation of the rectified images:

$$
t^{\star}=\underset{t}{\arg \min } \frac{1}{N} \sum_{i=1}^{N}\left|y_{i}^{\prime}-y_{i}+t\right|
$$

Effect of pointing error before correction
where y_{i} and y_{i}^{\prime} are the vertical coordinates of the keypoints in the rectified images.
[Lowe 2004]David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004

On small areas of interest

- epipolar curves are approximated by a bundle of parallel lines
- the effect of pointing error is approximated by a constant offset

Hence, given a set of keypoint matches (obtained with SIFT [Lowe 2004]), the error can be corrected with a vertical translation of the rectified images:

$$
t^{\star}=\underset{t}{\arg \min } \frac{1}{N} \sum_{i=1}^{N}\left|y_{i}^{\prime}-y_{i}+t\right|
$$

Effect of pointing error after correction
where y_{i} and y_{i}^{\prime} are the vertical coordinates of the keypoints in the rectified images.
[Lowe 2004]David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004

Local correction of the relative pointing error

Robust stereo matching

Stereo matching computes correspondences between a pair of images (easier if they are rectified). We use SGM [Hirschmüller'05] to approximately minimize

$$
E(\mathrm{D})=\sum_{\mathbf{p} \in \mathcal{V}} C_{\mathbf{p}}\left(\mathrm{D}_{\mathbf{p}}\right)+\sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{E}} V\left(\mathrm{D}_{\mathbf{p}}, \mathrm{D}_{\mathbf{q}}\right)
$$

Critical ingredients for remote sensing applications:

- matching cost: robustness to illumination changes (e.g. Census Transform [Zabih \& Woodfill '94])
- disparity post-processing: removal of spurious matches (left-right, speckle)

Left and Right images

SGM+Census Disparity

Filtered Disparity

Section 3. Triangulation and Digital Elevation Models

Disparity Charts vs. Elevation Maps : they are not the same!

Scheme of the whole pipeline (for one image pair)

Four steps to convert a pair of images to a DEM:

Match triangulation

Input: a point correspondence between two satellite images
Output: a 3D point
Algorithm: (triangulation)

1. Let $L_{A}, L_{B}, P_{A}, P_{B}$ be the localization and projection functions of each image
2. Let p, q be a corresponding pair of points between A and B
3. Solve the system of equations $\left\{\begin{array}{l}p=P_{A}(x, y, h) \\ q=P_{B}(x, y, h)\end{array} \quad\right.$ or $P_{B}\left(L_{A}(p, h), h\right)=q$.

Match triangulation

Input: a point correspondence between two satellite images
Output: a 3D point
Algorithm: (triangulation)

1. Let $L_{A}, L_{B}, P_{A}, P_{B}$ be the localization and projection functions of each image
2. Let p, q be a corresponding pair of points between A and B
3. Solve the system of equations $\left\{\begin{array}{l}p=P_{A}(x, y, h) \\ q=P_{B}(x, y, h)\end{array} \quad\right.$ or $P_{B}\left(L_{A}(p, h), h\right)=q$.

Tricks:

1. In either case, the system is over-determined. You have to find a minimum-error solution.
2. Since the calibration functions are very smooth, you can linearize them and the system becomes linear (with a single unknown h, to be found by least squares).

Solving the triangulation equation

Given the a matching pair $\mathbf{p} \sim \mathbf{q}$, find h such that

$$
P_{B}\left(L_{A}(\mathbf{p}, h), h\right)=\mathbf{q}
$$

Observations:

1. Two equations and one unknown: overdetermined!
2. "Define" the solution as $h=\arg \min \left\|P_{B}\left(L_{A}(\mathbf{p}, h), h\right)-\mathbf{q}\right\|^{2}$
3. The functions P_{B} and Q_{A} are rational functions $\mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ of degree 3 (80 coefficients each)
4. Very well-posed problem: Newton's method converges in 2 iterations.

Solving the triangulation equation

Given the a matching pair $\mathbf{p} \sim \mathbf{q}$, find h such that

$$
P_{B}\left(L_{A}(\mathbf{p}, h), h\right)=\mathbf{q}
$$

Observations:

1. Two equations and one unknown: overdetermined!
2. "Define" the solution as $h=\arg \min \left\|P_{B}\left(L_{A}(\mathbf{p}, h), h\right)-\mathbf{q}\right\|^{2}$
3. The functions P_{B} and Q_{A} are rational functions $\mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ of degree 3 (80 coefficients each)
4. Very well-posed problem: Newton's method converges in 2 iterations.
5. Still better: solve the linearized system $\mathrm{d} P_{B} \cdot \mathrm{~d} L_{A}\left(\begin{array}{c}p_{1} \\ p_{2} \\ h\end{array}\right)=\binom{q_{1}}{q_{2}}$ which has the form $\binom{a_{1}}{a_{2}} h=\binom{b_{1}}{b_{2}}$, whose Moore-Penrose solution is $h=\frac{b \cdot a}{\|a\|^{2}}$

Dense stereo

Input: two satellite images
Output: a 3D point cloud Algorithm:

1. compute a dense field of correspondences
2. triangulate each correspondence

Input pair

Pixel correspondences

3D point cloud

Creation of a raster DEM

DEM = "Digital Elevation Model" an image whose pixel values represent heights
Input: a 3D point cloud
Input: a geographic grid
Output: a raster image (DEM) Algorithm:

1. average all the 3D points that fall in each cell of the grid

3D point cloud

DEM

Creation of a raster DEM

DEM = "Digital Elevation Model" an image whose pixel values represent heights
Input: a 3D point cloud
Input: a geographic grid
Output: a raster image (DEM)
Algorithm:

1. average all the 3D points that fall in each cell of the grid

3D point cloud

DEM

fancy DEM rendering

3D modeling form collections of multi-date images

3D modeling form collections of multi-date images

Challenge: Exploit the growing collection of satellite images

- from different satellites
- at different dates
- in different conditions

Input: multiple views

Output: 3D reconstruction

Images: WorldView3 from the MVS benchmark dataset of [Bosch et al 2016]

IARPA MVS challenge dataset

47 Worldview3 images of Buenos Aires taken over 14 months

Baseline choice

The first and last images are very different, but consecutive images have a low b / h, thus are rather easy to match.

Slanted views

Images: WorldView3 from the MVS benchmark dataset of [Bosch et al 2016]

Multi-date issue: vegetation changes

Multi-date pair, taken from a similar point of view.
Notice that the trees are different.

Multi-date issue: radiometric changes

Multi-date pair, taken from a similar point of view. One image is taken in winter (dark image, long shadows) and the other is taken in summer (brighter image, shorter shadows).

Multi-view stereo strategies

1. Traditional bundle adjustment + multi-view. Images can have very different appearances: different radiometry, changes, new structures.

- needs tie points (not stable in multi-date)
- solve large optimization problem with all the images

2. Fusion of 3D models from stereo pairs.

Compute models independently and combine them as 3D point clouds/meshes.

- uses geometry (more stable than tie points) to align
- can incorporate new data without overhead
- fusion uses statistical validation

Rationale: images may change but geometry does not

Our approach: choosing the good stereo pairs

The quality of 3D models from multi-date pairs varies wildly! Our solution aggregates models computed from well-chosen pairs.

Automatic 3D Reconstruction from Multi-Date Satellite Images,
G. Facciolo, C. de Franchis, and E. Meinhardt, Earth Vision CVPRW, 2017
(Winning solution of the 2016 IARPA challenge)

Algorithm overview

1. Select only the "best" pairs

- Maximum incidence angle $\theta_{\max }<40^{\circ}$
- Angle between the views $\alpha \in[5,45]^{\circ}$
- Temporal proximity

2. Stereo matching of selected pairs

- Use S2P Satellite Stereo Pipeline
- Triangulate and project

3. Alignment and fusion

- Align surface models by correlation (corrects bias)
- Aggregate by taking the heigh of the lower k-medians cluster at each pixel (removes seasonal vegetation)

Justifications

Pair selection strategy is obtained by studying all the 2162 stereo pairs.

Fusion criterion

median of 700 pairs

median of 50 pairs

k-medians of 50 pairs

Fusion results

Conclusion

Goal of this tutorial: Get a free entrance to the community of satellite imaging.
Techniques learned:

- Use Taylor theorem to approximate all your functions to order 1
- Basic linear algebra
- Convert between different geodetic coordinate systems
- Think globally, process your images locally

Basis of this tutorial: Our MsC course on satellite imaging at the ENS Paris-Saclay

